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Chapter 1

SL = L: Undirected connectivity in
Logspace

1.1 Computing Resources
Four main computing resources that we consider as limited (and measure the performance of
our algorithms against)

• Time
• Memory
• Randomness
• Communication

1.2 Problem Statement
• Input: Graph 𝐺 = (𝑉, 𝐸); with source and target marked as 𝑠, 𝑡
• Output: YES iff 𝑠 and 𝑡 are connected, NO otw.

Above is the “traditional” definition of 𝑠− 𝑡 connectivity which we can solve with a vanilla BFS
or DFS. This will take 𝒪(|𝑉| + |𝐸|) and 𝒪(|𝑉|) extra bits of space / memory. The question is
then, can we solve the same problem with sub-linear extra memory usage.

Proposition 1.1

There is a randomized algorithm with 5 log |𝑉| bits of additional memory (directed and
undirected graphs).

Proposition 1.2: Omer Reingold, 2005
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6 CHAPTER 1. SL = L: UNDIRECTED CONNECTIVITY IN LOGSPACE

There is a log space (𝒪(log |𝑉|)) algorithm (deterministic) for undirected graphs. a
afirst great hit ...

It is yet unknown if we can achieve log space for directed graphs (with deterministic algorithm).
The best known algorithms runs with𝒪(log |𝑉|)3/2 bits of memory. Why is this so challenging?

Proposition 1.3

If divided 𝑠 − 𝑡 connectivity can be solved with 𝒪(log |𝑉|) extra bits of memory (without
randomness), then any randomized algorithm can be made deterministic at the expenses
of a constant factor increase in memory.

1.2.1 Log Space USTCON - Results
Here we highlight the progression in space complexity in various papers

• Nisan, 92: Space 𝒪(log2 𝑁), time 𝑁𝒪(1) algorithm... improved to 𝒪(log4/3 𝑁) in space.
• Reingold, 05: Space 𝒪(log𝑁), time 𝑁𝒪(1) algorithm.
• Trifornov, 05: Space 𝒪((log𝑁)(log log𝑁)) algorithm.

1.3 Randomized Algorithm for Connectivity
Algorithm 1.1: RandomWalk Algorithm for Connectivity

Here is the algorithm
• 𝑠𝑡𝑒𝑝𝑠 ← 0

• 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← 𝑠; 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑡

• while 𝑠𝑡𝑒𝑝𝑠 < 𝑇

– 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ← random neighbor of current
– if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 == 𝑡𝑎𝑟𝑔𝑒𝑡 return 𝑌𝐸𝑆

• return 𝑁𝑂

The total memory for this algorithm is

2 log𝑁 + log𝑇 ≤ 5 log𝑁 (1.3.1)

extra bits, assuming we can get random neighbor.

Proposition 1.4: Alenilaus, 80s
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If 𝑇 = 100𝑁3 steps, then 𝑃𝑟[Algorithm wrong] < 1
3

which can improved to arbitrary accuracy by repeating the algorithm. Algorithms of this nature
can perform bad on graphs known as “Lollipop Graphs” and even worse a “Dumbell Graph”

1.4 Spectral Graph Theory
Consider an undirected graph 𝐺 = (𝑉, 𝐸),

Definition 1.1: Degree

Degree of a vertex 𝑣 is the number of edges 𝑣 is connected to.

Definition 1.2: Regular

Graphs is “regular” if all vertices have same degree.

Definition 1.3: Adjacency Matrix

𝐴(𝐺) is a symmetric matrix where 𝐴(𝐺)𝑖𝑗 = 1 if {𝑖, 𝑗} is an edge, 0 otw.

Definition 1.4: Normalized Adj Matrix

If 𝐺 is regular and has degree 𝐷, then the normalized adjacency matrix is defined as

𝑀(𝐺) ≡ 𝐴(𝐺)
𝐷 (1.4.1)

Lemma 1.1

If𝐺 is regular, then 1 is an eigenvalue of𝑀(𝐺). And v1 = [1 1 … 1]⊤ is an eigenvector
with eigenvalue 1.

Proposition 1.5: Eigenvalues of Regular Graphs

If 𝐺 is regular, then all eigenvalues of𝑀(𝐺) have magnitude ≤ 1.
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Proof:WLOG assume 𝑥3 is the largest entry in the vector x, then

𝜆|𝑥3| = |𝑀31𝑥1 +𝑀32𝑥2 + ... +𝑀3𝑁𝑥𝑁 | (1.4.2)
≤ 𝑀31|𝑥3| + 𝑀32|𝑥3| + ... + 𝑀3𝑁 |𝑥3| (1.4.3)
= (𝑀31 +…+𝑀3𝑁)|𝑥3| (1.4.4)
= 1|𝑥3| (1.4.5)

Thus, 𝜆 ≤ 1. ■

Proposition 1.6: Connectedness and Matrices

Regular 𝐺 = (𝑉, 𝐸) is connected if and only if the only eigenvector with eigenvalue 1 for
𝑀(𝐺) is the all 1 vector. a

ai.e., eigenvalue 1 has an multiplicity of 1.

Proof: [Regular 𝐺 = (𝑉, 𝐸) is connected implies 𝜆 = 1 has multiplicity of 1 for 𝑀(𝐺).] From
proof to Prop. 1.5 we already know that |𝜆| ≤ 1. With 𝑥𝑗 = max(x) as the largest entry in the
eigenvector, we recall (and abstract the inequality used back then as

|𝜆||𝑥𝑗| = |(𝑀(𝐺)x)𝑗| =
∣∣∣∣∣

∑
𝑣𝑖∈𝑁(𝑣𝑗)

𝑥𝑖
∣∣∣∣∣
/𝐷 ≤ |𝑥𝑗| (1.4.6)

We are now interested in the condition of when 𝜆 = 1, |𝜆||𝑥𝑗| = |𝑥𝑗|, in which case we need

𝑥𝑖 = 𝑥𝑗, ∀𝑣𝑖 ∈ 𝑁(𝑣𝑗) (1.4.7)

This suffices as a proof to every eigenvector with eigenvalue 1 to𝑀(𝐺) is the 1 vector. ■

Proof: [𝜆 = 1 has multiplicity of 1 for𝑀(𝐺) implies regular 𝐺 = (𝑉, 𝐸) is connected.] todo …

Proposition 1.7: Eigenvalues of a Regular Graph

If 𝐺 is regular, then the eigenvalues of𝑀(𝐺) are

1 = 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑁 (1.4.8)

Proof: This follows from the proof for Prop. 1.5 where we proved that all eigenvalues of 𝑀(𝐺)
have magnitude ≤ 1. Since the one vector 1 is an eigenvector of𝑀(𝐺)with eigenvalue one, we
know that 𝜆1 = 1 is attainable. This suffices as a proof. ■

Proposition 1.8

𝐺 is connected and regular if and only if on𝑀(𝐺)

max(|𝜆2|, |𝜆3|, … , |𝜆𝑁 |) < 1 (1.4.9)
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Proof: todo ...

Proposition 1.9: Eigenvalues of D-Regular Graphs

If 𝐺 is a D-regular graph, then
• 1 is an eigenvalue of𝑀(𝐺), and
• all eigenvalues of𝑀(𝐺) are at most 1 in absolute value

Definition 1.5: Self Loops

We add connections from each node in the graph to themselves. In the matrix representa-
tion, we set 𝐺𝑖𝑖 = 1,∀𝑖.

Definition 1.6: Second Largest Eigenvalue

... denoted as 𝜆(𝐺) or 𝜆2(𝐺).

Lemma 1.2

If 𝐺 is D-regular and has self loops, then 𝐺 is connected if and only if 𝜆(𝐺) < 1.

Proof: [𝐺 is disconnected implies 𝜆(𝐺) = 1 (via contrapositive).] Consider a graph 𝐺 such that
it is comprised of two clouds of disjoint graphs 𝐺1 and 𝐺2. Then the adjacency matrix of 𝐺will
take a block matrix form

𝑀𝐺 = [𝑀𝐺1
[0]

[0] 𝑀𝐺2

] (1.4.10)

From linear algebra, we know that the eigenvalues of 𝑀𝐺 will be the union of eigenvalues of
𝑀𝐺1

and𝑀𝐺2
. Now, consider

x(1) =

⎡
⎢⎢⎢⎢⎢
⎣

1
1
⋮
0
0

⎤
⎥⎥⎥⎥⎥
⎦

and x(2) =

⎡
⎢⎢⎢⎢⎢
⎣

0
0
⋮
1
1

⎤
⎥⎥⎥⎥⎥
⎦

(1.4.11)

are both eigenvectors of 𝑀𝐺 with eigenvalues of 1. Hence, there are two orthogonal eigenvec-
tors with eigenvalue 1, and 𝜆(𝐺) = 1 as wanted. ■

Proof: [If 𝐺 is connected, then 𝜆(𝐺) < 1.] We already know that 1 is an eigenvalue of 𝑀𝐺 with
the 1 vector as eigenvector. Suppose 𝜆 is also an eigenvalue with v as an eigenvector and v is
perpendicular to 1. Now,

1 ⟂ v ⟹ ⟨v, 1⟩ = 𝑣1 + 𝑣2 +⋯+ 𝑣𝑁 = 0 (1.4.12)
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The vector v must contain some positive entries and some negative entries, we separate them
into two sets

𝑃 = {𝑖 ∶ 𝑣𝑖 ≥ 0} and 𝑁 = {𝑖 ∶ 𝑣𝑖 < 0} (1.4.13)
where both sets are non-empty by Eq. 1.4.12. Taking a step back and reorganize the goal into
matrix form

𝑀𝐺

⎡
⎢⎢⎢⎢⎢
⎣

+
+
⋮
−
−

⎤
⎥⎥⎥⎥⎥
⎦

= 𝜆

⎡
⎢⎢⎢⎢⎢
⎣

+
+
⋮
−
−

⎤
⎥⎥⎥⎥⎥
⎦

where
⎡
⎢⎢⎢⎢⎢
⎣

+
+
⋮
−
−

⎤
⎥⎥⎥⎥⎥
⎦

= ⎡⎢⎢
⎣

P
−
N
⎤⎥⎥
⎦
= v (1.4.14)

Per element,
𝑁
∑
𝑗=1

𝑀𝐺[𝑖, 𝑗] ⋅ 𝑣𝑗 = 𝜆 ⋅ 𝑣𝑖, ∀𝑖 (1.4.15)

By the connectedness assumption, there must always be some edge connecting 𝑃 and𝑁 the two
sets, so

𝜆⎛⎜
⎝
∑
𝑖∈𝑃

𝑣𝑖⎞⎟
⎠

= ∑
𝑖∈𝑃

⎛⎜⎜
⎝

𝑁
∑
𝑗=1

𝑀𝐺[𝑖, 𝑗] ⋅ 𝑣𝑗
⎞⎟⎟
⎠

(1.4.16)

=
𝑁
∑
𝑗=1

𝑣𝑗 ∑
𝑖∈𝑃

𝑀𝐺[𝑖, 𝑗] (1.4.17)

= ∑
𝑗∈𝑃

𝑣𝑗 ⎛⎜
⎝
∑
𝑖∈𝑃

𝑀𝐺[𝑖, 𝑗]⎞⎟
⎠

+ ∑
𝑗∈𝑁

𝑣𝑗 ⎛⎜
⎝
∑
𝑖∈𝑃

𝑀𝐺[𝑖, 𝑗]⎞⎟
⎠

(1.4.18)

≤ ∑
𝑗∈𝑃

𝑣𝑗(1) + ∑
𝑗∈𝑁

𝑣𝑗
⎛⎜⎜
⎝
∑
𝑖∈𝑝

𝑀𝐺[𝑖, 𝑗]⎞⎟⎟
⎠

(1.4.19)

< ∑
𝑗∈𝑃

𝑣𝑗 (1.4.20)

where in the last two steps we utilized the facts that𝑀𝐺’s columns add up to 1 and we have at
least 1 non-zero entry in each row and col of𝑀𝐺.
In summary, we obtained

𝜆⎛⎜
⎝
∑
𝑖∈𝑃

𝑣𝑖⎞⎟
⎠

< ⎛⎜⎜
⎝
∑
𝑗∈𝑃

𝑣𝑗
⎞⎟⎟
⎠

⟹ 𝜆 < 1 (1.4.21)

■

Definition 1.7: Spectral Gap

Spectral Gap of a D-regular graph G is defined as

SpectralGap(𝐺) ≡ 1 − 𝜆(𝐺) (1.4.22)
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Lemma 1.3

If 𝐺 is a D-regular connected graph with self-loops, then

𝜆(𝐺) ≤ 1 − 1
2𝐷2 ⋅ 𝑁2 (1.4.23)

Definition 1.8

We say a graph 𝐺 is (𝑁,𝐷, 𝜆) if it has 𝑁 vertices, 𝐷 regular and 𝜆(𝐺) ≤ 𝜆.

1.5 Path Enumeration
The simplest case is wen the shortest path between 𝑠, 𝑡 is short. Then, we can enumerate all
paths of some length and see if 𝑡 is reached.
The algorithm goes as follows

Algorithm 1.2

1, Explore all paths of length less than or equal to 𝑇 from 𝑠. 2, If you reach 𝑡 in these
explorations, output YES. If not, output NO.

This takes 𝒪(log𝐷) ⋅ 𝑇 extra space, where 𝐷 is the degree of the graph and 𝑇 is the loop times.

Definition 1.9: Graph Diameter

Diameter of a graph is defined as the length of the longest shortest path for any pair of
vertices. By convention,

• G disconnected, diameter =∞, and
• G connected, diameter = max𝑖≠𝑗 (𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑖, 𝑗))

Proposition 1.10: Extra Space for Path Enumeration

Path enumeration will solve the 𝑠 − 𝑡 connectivity in with max extra space

(log𝐷) ⋅ Δ(𝐺) (1.5.1)

bits, where Δ(𝐺) is the max diameter of connected components of 𝐺.
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Proposition 1.11

If 𝐺 is connected, D-regular, has self-loops, thena

𝐷𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝐺) ≤ ⌈log 1
𝜆
𝑁⌉ + 1 (1.5.2)

a𝜆 is the second largest eigenvalue,𝑁 is the matrix size (number of nodes).

1.5.1 Reingold’s Idea
We see from the proposition above that the bigger the spectral gap, the smaller the number of
extra bits we need in space for the algorithm. The problem then is how we can transform the
graph enlarging the spectral gap while not hurting the degree too much. Formally, we want to
transform (𝐺, 𝑠, 𝑡) to ( ̄𝐺, ̄𝑠, ̄𝑡) such that

• 𝑠, 𝑡 connected in 𝐺 if and only if ̄𝑠, ̄𝑡 connected in ̄𝐺, and
• 𝜆( ̄𝐺) < 𝜆(𝐺), and
• 𝐷𝑒𝑔𝑟𝑒𝑒( ̄𝐺) is not much worse then 𝐷𝑒𝑔𝑟𝑒𝑒(𝐺)

1.5.2 Reducing Degree
For the first part of Eq. 1.5.1, we can reduce the degree of any graph with

Algorithm 1.3: Degree Reduce Procedure

The procedure,
• Break each edge into two vertices, and
• Add local edges at each “old” vertices, and
• Add self loops to make graph

Proposition 1.12

The procedure outlined above generates a degree 4 graph.

1.5.3 Improving Spectral Gap
Definition 1.10: Multi-graphs

A multi-graph is a superset of our old definition of a graph, except we allow repeated
edges between nodes. This is represented as values larger than 1 in the adjacency matrix.
All definitions are carried over without change: degree, normalized adjacency matrix, and
𝜆(𝐺).
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With the degree reducing algorithm in Sec. 1.5.1, we can reduce any graph to a degree of 4. This
means Eq. 1.5.1 is now transformed into

(log 4) ⋅ Δ(𝐺) = 2 ⋅ Δ(𝐺) (1.5.3)

extra bits of storage. How should we improve

Δ(𝐺) ≤ log 1
𝜆
𝑁 (1.5.4)

which is the largest diameter of any connected component?

Idea: Input 𝐺, 𝑠, 𝑡 where 𝐺 has self-loops and transform that into 𝐺′, 𝑠′, 𝑡′ where

𝜆(𝐺′) ≪ 𝜆(𝐺) (1.5.5)

Goal: Operations to improve (decrease) the second largest eigenvalue.

Definition 1.11: Squaring the Graph

Add new edges: if (𝑢, 𝑣) and (𝑣, 𝑤) are edges, then add an edge (𝑢, 𝑤).

Proposition 1.13: Adjacency of Squared Graph

𝐴𝐺2 = (𝐴𝐺)2 (1.5.6)
in matrix representation, and we allow multi-graph in this setting.

Proof:

(𝐴𝐺)2[𝑖,𝑗] =
𝑁
∑
𝑘=1

(𝐴𝐺)[𝑖,𝑘](𝐴𝐺)[𝑘,𝑗] (1.5.7)

■

Proposition 1.14: Squared Graph Spectral Gap

If 𝐺 is a (𝑁,𝐷, 𝜆) graph with self loops, then 𝐺2 is a (𝑁,𝐷2, 𝜆2) graph with self loop. Since
connected ⟹ 𝜆 < 0, 𝜆2 < 𝜆.

Theorem 1.1: Squared Matrix Spectral Decomposition

𝑀 is a symmetric matrix with eigenvalues

𝜆1 ≥ 𝜆2 ≥ 𝜆3 ≥ ⋯ ≥ 𝜆𝑁 (1.5.8)
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then,𝑀2 is a symmetric matrix with the same eigenvectors but with eigenvalues

𝜆2
1, 𝜆2

2,… , 𝜆2
𝑁 (1.5.9)

Proof: For𝑀, we have
𝑀x = 𝜆x (1.5.10)

Then,
𝑀2x = 𝜆𝑀x = 𝜆2x (1.5.11)

This concludes the proof. ■

Corollary 1.1.1: Squared Graph Eigenvalues

It follows from Thm. 1.1 directly that if 𝜆1,… , 𝜆𝑁 are eigenvalues for the original graph
matrix𝑀, then the new squared𝑀2 matrix has the same eigenvectors but with eigenvalues
𝜆2
1, 𝜆2

2,… , 𝜆2
𝑁 instead.

Proposition 1.15: Normalized Adjacency of Squared Graph

The normalized graph matrix of 𝐺2, is such that

𝑀𝐺2 = (𝑀𝐺)2 (1.5.12)

Proof: Recall that

𝑀𝐺 = 𝐴𝐺
𝐷 (1.5.13)

Then,
𝑀𝐺2 =

𝐴𝐺2

𝐷2 = (𝐴𝐺)2

𝐷2 = (𝐴𝐺
𝐷 )

2
= (𝑀𝐺)2 (1.5.14)

This concludes the proof. ■

Proposition 1.16: Square Graph Does Not Save Memory

Recall that our initial goal was to save extra memory used. Here with squaring, though we
enlarged the spectral gap as desired ((1 − 𝜆) → (1 − 𝜆2), the degree got larger (𝐷 → 𝐷2).
In total, extra bits is

(log𝐷) ⋅ log 1
𝜆
𝑁 ⇝ (log𝐷2) log 1

𝜆2
𝑁 (1.5.15)

= 2 ⋅ log𝐷 ⋅ 12 ⋅ log 1
𝜆
𝑁 (1.5.16)

= (log𝐷) ⋅ log 1
𝜆
𝑁 (1.5.17)
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which is exactly what we had before. This suffices as a proof for squaring matrices alone
does not bring any memory savings. ■

Goal Taking a step back, we can see that we need to find a powering operation that improves
the second largest eigenvalue while not increasing degree too much. This leads to the follow-
ing algorithm:

Algorithm 1.4: Reingold, 2005

For a graph specified as (𝐺, 𝑠, 𝑡)where 𝐺 is 4-regular and has self-loops, define a recursive
relationship

𝐺𝑖+1 = 𝐺2
𝑖 z⃝𝐻 (1.5.18)

where 𝐻 is a special graph. This recursion covers the transformation

(𝐺, 𝑠, 𝑡)⇝ (𝐺1 = 𝐺2 z⃝𝐻, ̄𝑠, ̄𝑡)⇝ (𝐺2 = 𝐺2
1 z⃝𝐻, ̄̄𝑠, ̄̄𝑡)⇝ … (1.5.19)

Remark 𝐺2
𝑖 part decreases the second largest eigenvalue, and the z⃝𝐻 part brings down

the degree while not hurting second largest eigenvalue.

Definition 1.12: Consistent Labelling

𝐺 is a D-regular graph. A consistent labelling is a mapping

𝐿 ∶ 𝔼 → [𝐷] (1.5.20)

such that at each vertex all edges of the vertex have distinct labels.

Example Figure 1.1 depicts a consistent edge labelling of the graph.

Definition 1.13: Zig Zag Product

Input & Output
𝐺 ∶ (𝑁,𝐷,−)

𝐻 ∶ (𝐷,𝐷1, −)
⎫}
⎬}⎭
→ 𝐺 z⃝𝐻 ∶ (𝑁𝐷,𝐷2

1, −) (1.5.21)

Rotations
𝑅𝑜𝑡𝐺 ∶ [𝑁] × [𝐷] → [𝑁] × [𝐷]

𝑅𝑜𝑡𝐻 ∶ [𝐷] × [𝐷1] → [𝐷] × [𝐷1]
⎫}
⎬}⎭

(1.5.22)

→ 𝑅𝑜𝑡𝐺 z⃝𝐻 ∶ [𝑁 ⋅ 𝐷] × ([𝐷2
1]) → [𝑁 ⋅ 𝐷] × ([𝐷2

1]) (1.5.23)
≡ 𝑅𝑜𝑡𝐺 z⃝𝐻 ∶ [𝑁 ⋅ 𝐷] × ([𝐷1] × [𝐷1]) → [𝑁 ⋅ 𝐷] × ([𝐷1] × [𝐷1]) (1.5.24)
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Figure 1.1: Illustration of consistent labelling.

and

𝑅𝑜𝑡𝐺 z⃝𝐻 ((𝑣, 𝑎), (𝑘1, 𝑘2)) ∶ (1.5.25)
→ (𝑎′, 𝑖′) ← 𝑅𝑜𝑡𝐻(𝑎, 𝑘1) (1.5.26)
→ (𝑤, 𝑏′) ← 𝑅𝑜𝑡𝐺(𝑣, 𝑎′) (1.5.27)
→ (𝑏, 𝑖″) ← 𝑅𝑜𝑡𝐻(𝑏′, 𝑘2) (1.5.28)
→ output ((𝑤, 𝑏), (𝑘2, 𝑘1)) (1.5.29)

English Explanation The Zig-Zag product 𝐺 z⃝𝐻 replaces each vertex of 𝐺 with a copy
(cloud) of 𝐻, and connects the vertices by moving a small step (zig) inside the cloud, fol-
lowed by a big step between two clouds, and finally performs another small step (zag)
inside the destination cloud.

1.6 Zig Zag Analysis
In the previous section, we highlighted a combinatorial product between two graphs called Zig
Zag product. Here we present properties and analysis of the product.

Goal Consider the definition, where we are given graphs

𝐺 ∶ (𝑁,𝐷, 𝜆𝐺) and 𝐻 ∶ (𝐷,𝐷1, 𝜆𝐻) (1.6.1)

What can we tell about 𝐺 z⃝𝐻? In particular, it will be a (𝑁𝐷,𝐷2
1, ??) graph?
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Definition 1.14: Tensor Product

For 𝐴 ∈ ℝ𝑑1×1 and 𝐵 ∈ ℝ𝑑2×𝑑2 ,

ℝ(𝑑2
1)×(𝑑2

2) ∋ 𝐴⊗ 𝐵 where (𝐴 ⊗ 𝐵)𝑖𝑗 = [𝐴𝑖𝑗𝐵] (1.6.2)

Proposition 1.17: Adjacency of Zig Zag Product

For 𝐹 = 𝐺 z⃝𝐻,

𝐴𝐹 = (𝕀𝑁 ⊗𝐴𝐻) ⋅ 𝑃𝐺 ⋅ (𝕀𝑁 ⊗𝐴𝐻) (1.6.3)

=
⎡
⎢⎢⎢
⎣

[𝐴𝐻] [0] … [0]
[0] [𝐴𝐻] … [0]
⋮ ⋮ ⋱ [⋮]

[0] [0] … [𝐴𝐻]

⎤
⎥⎥⎥
⎦

⎡
⎢⎢⎢
⎣

[… ] [… ] … […]
[… ] [… ] … […]
⋮ ⋮ ⋱ [⋮]

[… ] [… ] … […]

⎤
⎥⎥⎥
⎦

⎡
⎢⎢⎢
⎣

[𝐴𝐻] [0] … [0]
[0] [𝐴𝐻] … [0]
⋮ ⋮ ⋱ [⋮]

[0] [0] … [𝐴𝐻]

⎤
⎥⎥⎥
⎦
(1.6.4)

where each [...] inside is of size (𝐷 × 𝐷), and thus the outer matrices are all of sizes (𝐷 ×
𝑁) × (𝐷 × 𝑁). Graphically, we note that the two (𝕀𝑁 ⊗ 𝐴𝐻) parts represent zig and zag
steps respectively in the product while the 𝑃 transition is the inter-cloud big step.a

Normalized Adjacency

𝑀𝐹 = 𝐴𝐹/𝐷 = (𝕀𝑁 ⊗𝑀𝐻) ⋅ 𝑃𝐺 ⋅ (𝕀𝑁 ⊗𝑀𝐻) (1.6.5)
aA permutation transition 𝑃 guarantees that 𝑃 has only one 1 in each row and column.

Lemma 1.4: Linear Algebra: LA1

For 𝐺 is a (𝑁,𝐷,−) graph,

𝜆𝐺 ≤ 𝜆 ⟺ 𝑀𝐺 = (1 − 𝜆)𝐽𝑁𝑁 + 𝜆 ⋅ 𝐸 (1.6.6)

a where b

‖𝐸‖ ≤ 1 (1.6.7)
a𝐽𝑁 is a box of𝑁 ×𝑁 matrix, filled with 1’s in every entry.
b‖⋅‖ is the spectral norm of amatrix, and is equal to the largest absolute eigenvalue for a symmetricmatrix.
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Remark Consider spectral decomposition of𝑀𝐺,

𝑀𝐺 = 1 ⋅
⎡
⎢⎢⎢
⎣

1/√𝑛
1/√𝑛

⋮
1/√𝑛

⎤
⎥⎥⎥
⎦

[ 1
√𝑛

1
√𝑛 … 1

√𝑛] + 𝜆2v2v⊤2 + 𝜆3v3v⊤3 +⋯+ 𝜆𝑁v𝑁v⊤𝑁 (1.6.8)

= 1(𝐽𝑁
𝑁 ) + 𝜆2v2v⊤2 + 𝜆3v3v⊤3 +⋯+ 𝜆𝑁v𝑁v⊤𝑁 (1.6.9)

= (1 − 𝜆)(𝐽𝑁
𝑁 )+ (𝜆(𝐽𝑁

𝑁 )+ 𝜆2v2v⊤2 + 𝜆3v3v⊤3 +⋯+ 𝜆𝑁v𝑁v⊤𝑁)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐸

(1.6.10)

If fact this sum that we called 𝐸 is the Eigen decomposition of 𝐸 itself!

Lemma 1.5: Linear Algebra LA 2

For 𝐴, 𝐵 ∈ ℝ𝑁×𝑁 ,
• ∥𝐴 + 𝐵∥ ≤ ∥𝐴∥ + ‖𝐵‖

• ∥𝐴 ⋅ 𝐵∥ ≤ ∥𝐴∥ ⋅ ‖𝐵‖

• ∥𝐴 ⊗ 𝐵∥ = ∥𝐴∥ ⋅ ‖𝐵‖

Lemma 1.6: Linear Algebra LA 3

For any permutation matrix (each row and column has exactly one non-zero) 𝑃,

‖𝑃‖ = 1 (1.6.11)

Theorem 1.2: Rozenmann-Vadhan 05, RVW 01

For
𝐺 ∶ (𝑁,𝐷, 𝜆𝐺) and 𝐻 ∶ (𝐷,𝐷1, 𝜆𝐻) (1.6.12)

𝐹 = 𝐺 z⃝𝐻 is a (𝑁𝐷,𝐷2
1, 𝜆𝐹)-graph, where

𝜆𝐹 ≤ 1 − (1 − 𝜆𝐻)2(1 − 𝜆𝐺) (1.6.13)

Alternatives

𝜆𝐹 ≤ 1 − (1 − 𝜆𝐻)2(1 − 𝜆𝐺) (1.6.14)
⟺ (1 − 𝜆𝐻)2(1 − 𝜆𝐺) ≤ 1 − 𝜆𝐹 (1.6.15)
⟺ 𝐺𝑎𝑝(𝐻)2 ⋅ 𝐺𝑎𝑝(𝐺) ≤ 𝐺𝑎𝑝(𝐹) (1.6.16)

Proof:We start with writing out a complete form of𝑀𝐹. Recall from earlier (Prop. 1.17) that

𝑀𝐹 = (𝕀𝑁 ⊗𝑀𝐻) ⋅ 𝑃𝐺 ⋅ (𝕀𝑁 ⊗𝑀𝐻) (1.6.17)
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By Lemma 1.4, we can derive

𝑀𝐻 = ((1 − 𝜆𝐻)𝐽𝐷𝐷 + 𝜆𝐻𝐸𝐻) where ∥𝐸𝐻∥ ≤ 1 (1.6.18)

Then,
𝕀𝑁 ⊗𝑀𝐻 = (1 − 𝜆𝐻)𝕀𝑁 ⊗ 𝐽𝐷

𝐷 + 𝜆𝐻𝕀𝑁 ⊗ 𝐸𝐻 (1.6.19)

and thus

𝑀𝐹 = ((1 − 𝜆𝐻)𝕀𝑁 ⊗ 𝐽𝐷
𝐷 + 𝜆𝐻𝕀𝑁 ⊗ 𝐸𝐻) × 𝑃 × ((1 − 𝜆𝐻)𝕀𝑁 ⊗ 𝐽𝐷

𝐷 + 𝜆𝐻𝕀𝑁 ⊗ 𝐸𝐻) (1.6.20)

= (1 − 𝜆𝐻)2 (𝕀𝑁 ⊗ 𝐽𝐷
𝐷 ) ⋅ 𝑃 ⋅ (𝕀𝑁 ⊗ 𝐽𝐷

𝐷 ) (1.6.21)

+ (1 − 𝜆𝐻)𝜆𝐻 (𝕀𝑁 ⊗ 𝐽𝐷
𝐷 ) ⋅ 𝑃 ⋅ (𝕀𝑁 ⊗ 𝐸𝐻)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐸(1)

(1.6.22)

+ 𝜆𝐻(1 − 𝜆𝐻) (𝕀𝑁 ⊗ 𝐸𝐻) ⋅ 𝑃 ⋅ (𝕀𝑁 ⊗ 𝐽𝐷
𝐷 )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐸(2)

(1.6.23)

+ 𝜆2
𝐻 ⋅ (𝕀𝑁 ⊗ 𝐸𝐻) ⋅ 𝑃 ⋅ (𝕀𝑁 ⊗ 𝐸𝐻)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐸(3)

(1.6.24)

= (1 − 𝜆𝐻)2 (𝕀𝑁 ⊗ 𝐽𝐷
𝐷 )𝑃(𝕀𝑁 ⊗ 𝐽𝐷

𝐷 )+ (1 − 𝜆𝐻)𝜆𝐻𝐸(1) + 𝜆𝐻(1 − 𝜆𝐻)𝐸(2) + 𝜆2
𝐻𝐸(3)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐸(4)

(1.6.25)

Here, ∥𝐸(1)∥ , ∥𝐸(2)∥ , ∥𝐸(3)∥ ≤ 1 by applying Lemma 1.5 multiple times. I present the proof for
∥𝐸(1)∥ ≤ 1 here.

∥𝐸(1)∥ = ∥(𝕀𝑁 ⊗ 𝐽𝐷
𝐷 ) ⋅ 𝑃 ⋅ (𝕀𝑁 ⊗ 𝐸𝐻)∥ (1.6.26)

≤ ∥𝕀𝑁 ⊗ 𝐽𝐷
𝐷 ∥ ⋅ ‖𝑃‖ ⋅ ∥𝕀𝑁 ⊗ 𝐸𝐻∥ (1.6.27)

≤ 1 ⋅ 1 ⋅ 1 (1.6.28)
≤ 1 (1.6.29)

Then,

∥𝐸(4)∥ ≤ ∥(1 − 𝜆𝐻)𝜆𝐻 + 𝜆𝐻(1 − 𝜆𝐻) + 𝜆2
𝐻∥ (1.6.30)

= (1 − 𝜆𝐻)𝜆𝐻 + 𝜆𝐻(1 − 𝜆𝐻) + 𝜆2
𝐻 (1.6.31)

= 2𝜆𝐻(1 − 𝜆𝐻) + 𝜆2
𝐻 (1.6.32)

= 1 − (1 − 𝜆𝐻)2 (1.6.33)
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Summary of Above

𝑀𝐹 = (𝕀𝑁 ⊗𝑀𝐻) ⋅ 𝑃𝐺 ⋅ (𝕀𝑁 ⊗ 𝑀𝐻) (1.6.34)

= (1 − 𝜆𝐻)2 (𝕀𝑁 ⊗ 𝐽𝐷
𝐷 ) ⋅ 𝑃 ⋅ (𝕀𝑁 ⊗ 𝐽𝐷

𝐷 )
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝛼

+𝐸(4) (1.6.35)

where
∥𝐸(4)∥ ≤ 1 − (1 − 𝜆𝐻)2 (1.6.36)

We can massage and transform this result with

𝛼 = 1
𝐷2 (𝕀𝑁 ⊗ 𝐽𝐷) ⋅ 𝑃 ⋅ (𝕀𝑁 ⊗ 𝐽𝐷) (1.6.37)

= 1
𝐷2 ⋅ 𝐴𝐺 ⊗ 𝐽𝐷 (1.6.38)

= 𝐴𝐺
𝐷 ⊗ 𝐽𝐷

𝐷 (1.6.39)

= 𝑀𝐺 ⊗ 𝐽𝐷
𝐷 (1.6.40)

and plug back into Eq. 1.6.35 to get

𝑀𝐹 = (1 − 𝜆𝐻)2 (𝑀𝐺 ⊗ 𝐽𝐷
𝐷 )+ 𝐸(4) (1.6.41)

Recall from Lemma 1.4 that

𝑀𝐺 = (1 − 𝜆𝐺) ⋅ 𝐽𝑁𝑁 + 𝜆𝐺 ⋅ 𝐸𝐺 where ∥𝐸𝐺∥ ≤ 1 (1.6.42)

plugging this back into Equation 1.6.41, we get

𝑀𝐹 = (1 − 𝜆𝐻)2(1 − 𝜆𝐺) (𝐽𝑁 ⊗ 𝐽𝐷
𝑁𝐷 )+ (1 − 𝜆𝐻)2 ⋅ 𝜆𝐺 (𝐸𝐺 ⊗ 𝐽𝐷

𝐷 )+ 𝐸(4) (1.6.43)

= (1 − 𝜆𝐻)2(1 − 𝜆𝐺)𝐽𝑁𝐷
𝑁𝐷 + (1 − 𝜆𝐻)2 ⋅ 𝜆𝐺 ⋅ (𝐸𝐺 ⊗ 𝐽𝐷

𝐷 )+ 𝐸(4)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐸(5)

(1.6.44)

We can quantify ∥𝐸(5)∥ as

∥𝐸(5)∥ ≤ (1 − 𝜆𝐻)2 ⋅ 𝜆𝐺 ⋅ ∥𝐸𝐺 ⊗ 𝐽𝐷
𝐷 ∥ + ∥𝐸(4)∥ (1.6.45)

≤ (1 − 𝜆𝐻)2 ⋅ 𝜆𝐺 ⋅ 1 + 1 − (1 − 𝜆𝐻)2 (1.6.46)
= 1 − (1 − 𝜆𝐺) ⋅ (1 − 𝜆𝐻)2 (1.6.47)
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Summary of Above

𝑀𝐹 = (1 − 𝜇) ⋅ 𝐽𝑁𝐷
𝑁𝐷 + 𝐸(5) where ∥𝐸(5)∥ ≤ 1 − (1 − 𝜆𝐺) ⋅ (1 − 𝜆𝐻)2 (1.6.48)

i.e., the second largest eigenvalue of𝑀𝐹 is at most 1− (1− 𝜆𝐺) ⋅ (1 − 𝜆𝐻)2 (by Lemma 1.4).

This concludes the proof. ■

1.7 Undirected s-t Connectivity in Log Space

1.7.1 The Procedure
Algorithm 1.5: USTCONN Log Space

This is a four step procedure, with input 𝐺 = (𝑉, 𝐸) and two nodes 𝑠, 𝑡 in the graph. We
wish to output if 𝑠, 𝑡 are connected with each other.

• Step 1. Transform
(𝐺, 𝑠, 𝑡)⇝ (𝐺0, 𝑠0, 𝑡0) (1.7.1)

where 𝐺0 is a 𝐵2 regular graph, for some constant 𝐵. a

• Step 2. Fix 𝐻, a (𝐵4, 𝐵, 1/4) graph.
• Step 3. For 𝑘 ← 1,… , 𝐿, computebc

𝐺𝑘 = 𝐺2
𝑘−1 z⃝𝐻 (1.7.2)

• Step 4. Solve 𝑠𝐿, 𝑡𝐿 connectivity on 𝐺𝐿 by path enumeration.
aFor example, we have the power to transform any graph into a 4-regular graphusing the algorithmdetailed

previously.
bInvariant: 𝐺𝑘 is always a 𝐵2 regular graph.
cRemark: |𝐺𝑘 | = 𝑁 ⋅ 𝐵4𝑘. We than think of vertices in 𝐺𝑘 as �̄� ≡ (𝑣, 𝑎1, 𝑎2,… , 𝑎𝑘) where 𝑣 is a vertex in 𝐺0

and 𝑎. is a vertex name in𝐻.

1.7.2 Path Enumeration Path Length Analysis

Let 𝜆𝑘 denote the second largest eigenvalue of a connected component of 𝐺𝑘. We know from
Thm. 1.2 that

𝜆𝑘 ≤ 1 − (1 − 𝜆𝐻)2 ⋅ (1 − 𝜆2
𝑘−1) (1.7.3)
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where we have 𝜆2
𝑘−1 because 𝐺𝑘 = 𝐺2

𝑘−1 z⃝𝐻. By assumption on 𝐻 that 𝜆𝐻 ≤ 1/4),

𝜆𝑘 ≤ 1 − (3
4)

2
⋅ (1 − 𝜆2

𝑘−1) (1.7.4)

⟹ (3
4)

2
(1 − 𝜆2

𝑘−1) ≤ 1 − 𝜆𝑘 (1.7.5)

⟹ ((3
4) ⋅ (1 + 𝜆𝑘−1)) (1 − 𝜆𝑘−1) ≤ (1 − 𝜆𝑘) (1.7.6)

⟹ (1 − 𝜆𝑘) ≥ min( 1
18,

35
32(1 − 𝜆𝑘−1)) (1.7.7)

Proposition 1.18

If 𝐿 = 𝒪(log𝑁0), then we will have

1 − 𝜆𝐿 ≥ 1
18 ⟺ 𝜆𝐿 ≤ 17

18 (1.7.8)

Proposition 1.19

Path enumeration on 𝐺𝐿 results in paths of length

Δ = 𝒪 (log 1
𝜆𝐿

𝑁𝐿) = 𝒪 (log𝑁0) (1.7.9)

Proof: By invariant stated above,
𝑁𝐿 = 𝑁0 ⋅ 𝐵4𝐿 (1.7.10)

then the path length bound becomes

log 1
𝜆𝐿

𝑁𝐿 ≤ log 18
17

𝑁𝐿 ≤ 𝒪(log𝑁0) + (𝐿) (1.7.11)

1.7.3 Space Complexity
Input We are given the raw input graph 𝐺0, original source and target 𝑠0, 𝑡0. Recall from
earlier that we can label vertices in 𝐺𝐿 as

(𝑣 ∈ 𝐺0, 𝑎1 ∈ 𝑉𝐻 , 𝑎2 ∈ 𝑉𝐻 ,… , 𝑎𝐿 ∈ 𝑉𝐻) (1.7.12)

which is a path that we took from a vertex in 𝐺0 via a series of steps labeled with vertices in 𝐻.

Goal Given a sequence of edge labels in 𝐺𝐿, (𝑒1, 𝑒2,… , 𝑒Δ) we have to check where we end in
𝐺𝐿.
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Idea Recall that the original goal is to compute this query space efficiently. In particular, that
means we don’t have the luxury of computing out the entire𝐺𝐿 graph. We can instead compute
the rotation maps

𝑅𝑜𝑡𝐺𝑘
∶ [𝑁𝑘] × [𝐵2] → [𝑁𝑘] × [𝐵2] (1.7.13)

recursively, following 𝐺𝑘 = 𝐺2
𝑘−1 z⃝𝐻.

Recursive Computation Suppose we are to compute

𝑅𝑜𝑡𝐺𝑘
((𝑣, 𝑎1, 𝑎2,… , 𝑎𝑘), 𝑒 ∈ [𝐵2]) (1.7.14)

given𝑅𝑜𝑡𝐺𝑘−1
. We can compute𝑅𝑜𝑡𝐺2

𝑘−1 z⃝𝐻 using the steps outlined in Definition 1.13. Unwind-
ing,

𝑅𝑜𝑡𝐺2
𝑘−1

( ̄𝑣, (𝑓1, 𝑓2)) = 𝑅𝑜𝑡𝐺𝑘−1
(𝑅𝑜𝑡𝐺𝑘−1

( ̄𝑣, 𝑓1), 𝑓2) (1.7.15)

where 𝑓1, 𝑓2 are edge labels in 𝐺𝑘−1.

Space Complexity With some careful book keeping, we can implement the recursive proce-
dure outlined above with a total of

𝒪(log𝑁) (1.7.16)

extra memory.

1.8 Expander Graphs
Definition 1.15: Spectral Expander

A 𝐷-regular graph is a 𝜆-expander if 𝐺 is a (𝑁,𝐷, 𝜆)-graph.

Example Suppose that we have a (𝑁 = 106, 𝐷 = 10, 𝜆 ≤ 1/2)-graph. Then, every two nodes
in this graph are connected by a path of length ≤ log𝐷 log1/𝜆 𝑁 = log 10 log2 106 ≤ 24.

Proposition 1.20: Expander Graphs Properties

If 𝜆 ≤ 1
2 , then for any set of nodes 𝑆 in this expander graph , the number of edges between

𝑆 and ̄𝑆 is such that
𝐸(𝑆, ̄𝑆) ≥ Ω(1) ⋅ |𝑆| (1.8.1)

Definition 1.16: Expander Graph Intuitively

Expander Graphs = extremely well-connected graphs with few edges.
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1.8.1 History of Expander Graphs
The guiding question can be summarized as follows: (with example 𝐷 and 𝜆 values

Given 𝑁, degree 𝐷 = 4 and 𝜆 = 0.9. Can we find a (𝑀,𝐷, 𝜆)-graph where 𝑀 ∈
(𝑁, 20).

...



Chapter 2

Sensitivity Conjecture

2.1 Classic Combinatorial Measures
Consider a family of functions with signature

𝑓 ∶ {0, 1} ≡ {1,−1}𝑛 → {0, 1} (2.1.1)

the question is then how can we measure the complexity of 𝑓 .

2.1.1 Decision-Tree Complexity
Definition 2.1: Decision Tree Complexity

𝐷𝑇(𝑓 ) is the min-depth of a decision tree that computes 𝑓 .

As two easy examples,
𝐷𝑇(∨) = 𝑛 and 𝐷𝑇(∧) = 𝑛 (2.1.2)

for 𝑓 = ⋅(𝑥1, 𝑥2,… , 𝑥𝑛). Examples here are such that they can be of linear depth or logarithmic.
Regardless, these trees depend on all input bits for computation.

2.1.2 Certificate Complexity
Definition 2.2: Certificate Complexity

For a specific input
𝐶𝐶(𝑓 , 𝑥) = min{|𝑆| ∶ 𝑆 is a certificate of 𝑥} (2.1.3)

where we say 𝑆 ⊆ [𝑛] is a certificate for 𝑓 at 𝑥 if all inputs that agree with 𝑥 on 𝑆 have same
𝑓 value. Then, for functions, we take

𝐶𝐶(𝑓 ) = max𝑥 𝐶𝐶(𝑓 , 𝑥) (2.1.4)

25
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Example Consider 𝑓 = ∧. Then 𝐶𝐶(∧, 𝑥) = 1 except for when 𝑥 = (1,… , 1) where

𝐶𝐶(∧, (1,… , 1)) = 𝑛 (2.1.5)

Thus,
𝐶𝐶(∧) = 𝑛 (2.1.6)

Proposition 2.1

𝐶𝐶(𝑓 ) ≤ 𝐷𝑇(𝑓 ) (2.1.7)

Example For the majority operation, 𝑀𝐴𝑇3 ∶ {0, 1}3 → {0, 1}. Then, 𝐷𝑇(𝑀𝐴𝑇3) = 3 and
𝐶𝐶(𝑀𝐴𝑇3) = 2.

Proposition 2.2

𝐷𝑇(𝑓 ) ≤ 𝐶𝐶(𝑓 )2 (2.1.8)

Definition 2.3: Sensitivity

𝑆(𝑓 , 𝑥) = # of neighbors 𝑦 of 𝑥with 𝑓 (𝑦) ≠ 𝑓 (𝑥). Where ‘neighbors’ mean that 𝑦 and 𝑥 differs
in exactly one bit. Then, as expected

𝑆(𝑓 ) = max𝑥 𝑆(𝑓 , 𝑥) (2.1.9)

Definition 2.4: Hyper Cube

A hyper cube 𝐻𝑛 has (bit strings) vertices {0, 1}𝑛. Two vertices are adjacent if they differ in
exactly one coordinate. A hypercube is a regular graph with degree 𝑛.

Definition 2.5: Sensitivity with Hyper Cube

With help of hyper cube, sensitivity =max over all vertices 𝑥, # neighbors of opposite color.

Proposition 2.3: Function as Polynomial

For any function 𝑓 (𝑥1,… , 𝑥𝑛) ∶ {0, 1}𝑛 → {0, 1}, there exists a equivalent representation

𝑓 (𝑥1,… , 𝑥𝑛) ∑
𝐼⊆[𝑛]

𝐶𝐼 ∏
𝑖∈𝐼

𝑥𝑖 (2.1.10)
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Definition 2.6: Degree

𝑑𝑒𝑔𝑟𝑒𝑒(𝑓 ) ∶ 𝑓 ∶ {0, 1}𝑛 → {0, 1} (2.1.11)
is equal to the degree of the polynomial representing 𝑓 , i.e.

max {|𝐼| ∶ 𝐶𝐼 ≠ 0} (2.1.12)

Example
• ∧𝑛, 𝑑𝑒𝑔𝑟𝑒𝑒(∧𝑛) = 𝑛 since ∧𝑛 = 𝑥1 ⋅ 𝑥2 …𝑥𝑛
• ∨𝑛, 𝑑𝑒𝑔𝑟𝑒𝑒(∨𝑛) = 𝑛 since

∨𝑛 = ¬(∧(¬𝑥1,… ,¬𝑥𝑛)) (2.1.13)
= 1 − (1 − 𝑥1)(1 − 𝑥2)… (1 − 𝑥𝑛) (2.1.14)

Proposition 2.4

Degree and decision tree depth for a function 𝑓 ∶ {0, 1}𝑛 → {0, 1} satisfies

𝑑𝑒𝑔𝑟𝑒𝑒(𝑓 ) ≤ 𝐷𝑇(𝑓 ) (2.1.15)

Proof:We can write the function as a decision tree, then

𝑓 (𝑥) = ∑
ℓ∈𝐿

(if 𝑥 leads to ℓ) ⋅ (ℓ.output) (2.1.16)

where 𝐿 is the set of all leaves in the decision tree. Then,

𝑓 (𝑥) = ∑
ℓ∈𝐿

(𝑥𝑖1 == 𝑎1)(𝑥𝑖2 == 𝑎2)… (𝑥𝑖𝑑 == 𝑎𝑑) ⋅ (ℓ.output) (2.1.17)

= ∑
ℓ∈𝐿

(𝑎1𝑥𝑖1 + (1 − 𝑎1)(1 − 𝑥𝑖1))… (𝑑𝑥𝑖𝑑 + (1 − 𝑎𝑑)(1 − 𝑥𝑖𝑑)) (2.1.18)

⟹ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑓 ) ≤ 𝐷𝑇(𝑓 ) (2.1.19)

Proposition 2.5: Summary

𝑆(𝑓 ) ≤ 𝐶𝐶(𝑓 )
𝑑𝑒𝑔𝑟𝑒𝑒(𝑓 )

⎫}
⎬}⎭
≤ 𝐷𝑇(𝑓 ) ≤ 𝐶𝐶(𝑓 )2 (2.1.20)

Note that here we don’t know how 𝑑𝑒𝑔𝑟𝑒𝑒(𝑓 ) relates to things on the left. This is called
sensitivity conjecture.
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Theorem 2.1

𝑑𝑒𝑔𝑟𝑒𝑒(𝑓 ), 𝐷𝑇(𝑓 ), 𝐶𝐶(𝑓 ), 𝑅𝐷𝑇(𝑓 ),𝑄𝐷𝑇(𝑓 ) are all within polynomial factors of each other.

𝐷𝑇(𝑓 ) ≤ 𝐶𝐶(𝑓 )2

𝑑𝑒𝑔𝑟𝑒𝑒(𝑓 ) ≤ 𝐶𝐶(𝑓 )𝐶1

𝐷𝑇(𝑓 ) ≤ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑓 )𝐶2

(2.1.21)

2.2 Sensitivity Conjecture
Proposition 2.6: Sensitivity Conjecture (Nisan-Szegedy, 1989)

𝑆(𝑓 ) ≥ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑓 )𝐶1 , 𝐶1 ∈ ℝ (2.2.1)
or equivalently,

𝑆(𝑓 ) ≥ 𝐷𝑇(𝑓 )𝐶2 , 𝐶2 ∈ ℝ (2.2.2)

Theorem 2.2: Hao Huang, 2019

𝑑𝑒𝑔𝑟𝑒𝑒(𝑓 ) ≤ 𝑆(𝑓 )2 (2.2.3)

Theorem 2.3: Graph Conjecture Equivalence (Gotsman-Linial, 1992)

Statement If for every subgraph of 𝐻 of 𝐻𝑛 of 2𝑛−1 + 1 vertices,

Δ(𝐻) ≥ 𝑔(𝑛) ⟹ ∀𝑓 , 𝑆(𝑓 ) ≥ 𝑔(𝑑𝑒𝑔𝑟𝑒𝑒(𝑓 )) (2.2.4)

where Δ(𝐻) for a graph 𝐻 is equal to the max degree of any vertex in 𝐻. a

Equivalence Sensitivity Conjecture (1989) is equivalent to “Graph Conjecture” proposed
by Gotsman-Linial (1992). Huang proved this graph conjecture in 2019.

aWe will use this meaning of Δ through out this chapter.

Proof: [TODO] will be added later

Theorem 2.4: Hao Huang, 2019
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Figure 2.1: N3 Parity Sub-graph.

For any subgraph 𝐻 of 𝐻𝑛 of ≥ 2𝑛−1 + 1 vertices has

Δ(𝐻) ≥ √𝑛 (2.2.5)

The extra “+1” part in the formulation plays a significant role. As an example, consider𝐻 = the
subgraph with vertices

{𝑥 | 𝑝𝑎𝑟𝑖𝑡𝑦(𝑥) = 0} (2.2.6)
If |𝐻| = 2𝑛−1, i.e. exactly half of the graph, then in this case we can construct Δ(𝐻) = 0. See
Figure 2.1 for an example.

Proposition 2.7: Observation 1

Take any graph 𝐺, let 𝐴𝐺 be its adjacency matrix. Then, a

Δ(𝐺) ≥ |𝜆1(𝐴𝐺)| (2.2.7)

Recall that if 𝐴𝐺 was regular, we showed that largest eigenvalue = degree of the graph.
aHere 𝜆1(𝐺) = largest eigenvalue in magnitude.

Proof: Suppose 𝐴𝐺v = 𝜆𝑖v. Let 𝑣𝑖∗ be the largest entry of v in absolute value.

|𝜆𝑖||𝑣𝑖∗ | =
∣
∣
∣
∣

𝑛
∑
𝑗=1

𝐴𝑖∗𝑗 ⋅ 𝑣𝑗
∣
∣
∣
∣

(2.2.8)

≤
𝑛
∑
𝑗=1

|𝐴𝑖∗𝑗| ⋅ |𝑣𝑗| (2.2.9)

≤ ∑
𝑗∶𝐴𝑖∗𝑗≠0

|𝑣𝑗| (2.2.10)

≤ ∑
𝑗∶𝐴𝑖∗𝑗≠0

|𝑣𝑖∗ | (2.2.11)

= 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖∗) ⋅ |𝑣𝑖∗ | (2.2.12)
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i.e., |𝜆1| ≤ 𝑑𝑒𝑔𝑟𝑒𝑒(𝑖∗) as wanted. ■

Definition 2.7: Signed-Adjacency Matrix

A matrix “𝐵” is called a signing of a graph 𝐺 if

𝐵𝑖𝑗 = (𝑖, 𝑗) edge ? ∈ {0, 1} ∶ 0 (2.2.13)

Proposition 2.8: Observation 2

Take any graph 𝐺, let 𝐵 be a signed adjacency matrix of 𝐺. Then,

Δ(𝐺) ≥ |𝜆1(𝐵)| (2.2.14)

Theorem 2.5: Cauchy-Interlacing Theorem

For a symmetric matrix𝑀 ∈ ℝ𝑛×𝑛, with eigenvalues

𝜆1(𝑀) ≥ 𝜆2(𝑀) ≥ 𝜆3(𝑀) ≥ ⋯ ≥ 𝜆𝑁(𝑀) (2.2.15)

its sub-matrix 𝑀−1 is a (𝑛 − 1) × (𝑛 − 1) matrix, obtained by deleting 𝑖-th row and 𝑖-th
column, with interlacing eigenvalues

𝜆𝑖(𝑀) ≥ 𝜆𝑖(𝑀−1) ≥ 𝜆𝑖+1(𝑀) (2.2.16)

Corollary 2.5.1: General Form, Repeating Interlacing

Let 𝐴 be a symmetric matrix inℝ𝑛×𝑛, and 𝐵 ∈ ℝ𝑀×𝑀 be a principal sub-matrix, with

𝜆𝑁(𝐴) ≤ 𝜆𝑁−1(𝐴) ≤ ⋯ ≤ 𝜆1(𝐴) (2.2.17)

and
𝜆𝑀(𝐵) ≤ 𝜆𝑀−1(𝐵) ≤ ⋯ ≤ 𝜆1(𝐵) (2.2.18)

Then,
𝜆𝑁−𝑀+𝑖(𝐴) ≤ 𝜆𝑖(𝐵) ≤𝑖 (𝐴) (2.2.19)

Theorem 2.6: Hao Huang, 2019

For any subgraph 𝐻 of 𝐻𝑛 of ≥ 2𝑛−1 + 1 vertices, it has

𝑚𝑎𝑥 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝐻) ≥ √𝑛 (2.2.20)
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Proof:We know that 𝑚𝑎𝑥 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝐻) ≥ largest eigenvalue of 𝐵 where 𝐵 is the principal matrix
corresponding to vertices in the subgraph of 𝐵𝑛. Then, by Cauchy Interlacing Theorem, we
have

𝜆1(𝐵) ≥ 𝜆𝑁−𝑀+1(𝐵𝑛) ≥ 𝜆2𝑛−1(𝐵𝑛) ≥ √𝑛 (2.2.21)
This completes the proof. ■

Proposition 2.9

∀𝑛, ∃ a signing 𝐵𝑛 of 𝐻𝑛 such that
𝐵2
𝑛 = 𝑛 ⋅ 𝕀2𝑛 (2.2.22)

Proposition 2.10

If 𝐵𝑛 is as above, then it has 2𝑛−1 eigenvalues that are √𝑛 and the other 2𝑛−1 eigenvalues
take value −√𝑛.

Proof:We know that 𝐵2
𝑛 = 𝑛 ⋅ 𝕀2𝑛 , so every eigenvalue of 𝐵𝑛 satisfies 𝜆2 = 𝑛. This implies

𝜆 ∈ {√𝑛,−√𝑛} (2.2.23)

Recall that the trace of a symmetric matrix is the sum its eigenvalues. Then here,

𝑇𝑟(𝐵𝑛) = 0 (2.2.24)

since 𝐵𝑛 must have zero diagonal entries. Hence it must be the case that out of 2𝑛 total eigen-
values, half of them are −√𝑛 while the other half have value √𝑛. ■
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Chapter 3

Sunflower Conjecture

3.1 Sunflower Lemma
Definition 3.1: Sunflowers (Erdös-Rado, 1960’s)

Take 𝑓 = {𝑠1,… , 𝑠𝑚} is a sunflower if all pairwise intersections are the same. i.e.,

𝑆𝑖 ∩ 𝑆𝑗 = 𝑆𝑘 ∩ 𝑆𝑒 if 𝑖 ≠ 𝑗, 𝑘 ≠ 𝑒. (3.1.1)

Equivalently, 𝑆1,… , 𝑆𝑚 is a sunflower if the “core”

𝐶 = 𝑆1 ∩ 𝑆2 ∩⋯∩ 𝑆𝑚 (3.1.2)

are such that
𝑆1\𝐶, 𝑆2\𝐶,… , 𝑆𝑚\𝐶 (3.1.3)

are disjoint

Lemma 3.1: Sunflower Lemma (Erdös-Rado, 1962)

Take 𝑓 = {𝑆1,… , 𝑆𝑚} ⊆ [𝑛], a where |𝑆𝑖| ≤ 𝑘,∀𝑖 ∈ [𝑚]. Then 𝑆 contains a 𝑟-sunflower if

𝑚 ≥ (𝑟 − 1)𝑘 ⋅ 𝑘! (3.1.4)

English Explanation This essentially says that any large collection of sets (large enough)
must contain a sunflower. Interestingly enough, this expression does not depend on the
size of universe, 𝑛.

aThis is a bit of abuse of notation. We really meant 𝑆𝑖 ⊆ [𝑛],∀𝑖 and 𝑓 is a set of such subsets.

Proof: The proof is an induction on 𝑘.

33
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Base Case 𝑘 = 1. Then 𝑆𝑖, 𝑆𝑗 are disjoint and 𝑚 > (𝑟 − 1) ⟹ 𝑚 ≥ 𝑟. So all of 𝑓 is a sunflower
with empty core.

Inductive Step There are two cases to consider. Suppose the family 𝑓 had ≥ 𝑟 disjoint sets,
then we are done. Otherwise, we choose some maximal collection of disjoint sets

𝑆𝑖1, 𝑆𝑖2, ..., 𝑆𝑖𝑙 where 𝑙 ≤ 𝑟 − 1 (3.1.5)

This means that we cannot add another set that is disjoint from these. In particular, every other
set must intersect with one of these sets. Now, call

𝐴 ≜ 𝑆𝑖1 ∪ 𝑆𝑖2 ∪⋯∪ 𝑆𝑖𝑙 (3.1.6)

then the total number of elements in 𝐴 is bounded by

|𝐴| ≤ 𝑘 ⋅ 𝑙 (3.1.7)
≤ 𝑘 ⋅ (𝑟 − 1) (3.1.8)

Now, every set 𝑆𝑖 must intersect 𝐴. Then, some element 𝑎 ∈ 𝐴must occur in≥ 𝛼 = 𝑚/|𝐴|many
sets.

𝛼 ≥ 𝑚
𝑘 ⋅ (𝑟 − 1) (3.1.9)

≥ (𝑟 − 1)𝑘 ⋅ 𝑘!
𝑘 ⋅ (𝑟 − 1) (3.1.10)

= (𝑟 − 1)𝑘−1 ⋅ (𝑘 − 1)! (3.1.11)
⟹ 𝑚 ≥ (𝑟 − 1)𝑘 ⋅ 𝑘! (3.1.12)

This concludes the proof. ■

Proposition 3.1: Erdös-Rado Conjecture

For every 𝑟, there is some constant 𝑐𝑟, such that if 𝑚 > 𝑐𝑘𝑟 , then it contains a 𝑟-sunflower.

Theorem 3.1: ALWZ, 2020

There exists a constant 𝐶 such that if 𝑓 = {𝑆1,… , 𝑆𝑚} ⊆ [𝑛] and |𝑆𝑖| ≤ 𝑘, and if 𝑚 >
(𝑐 ⋅ 𝑟 ⋅ log 𝑘)𝑘, then 𝑓 contains a 𝑟-sunflower.

Definition 3.2: Link of a Set System

Take 𝑓 = {𝑆1,… , 𝑆𝑚} ⊆ [𝑛]. Suppose 𝐼 ⊆ [𝑛], then define the link of 𝐼 in 𝑓 as

𝑓𝑖 = {𝑆𝑖 ∶ 𝑆𝑖 ⊇ 𝐼} 𝑓𝐼 = {𝑆𝑖 � 𝐼 ∶ 𝑆𝑖 ⊇ 𝐼} (3.1.13)
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Definition 3.3: Spread

A set system 𝑓 = {𝑆1, 𝑆2,… , 𝑆𝑚} ⊆ [𝑛], where each |𝑆𝑖| ≤ 𝑘, is 𝑠-spread if
• |𝑓 | ≥ 𝑠𝑘, and
• ∀𝐼 ⊆ [𝑛], |𝑓𝐼 | ≤ 𝑠𝑘−|𝐼| ⋅ |𝑓 |

Lemma 3.2: Main Lemma, ALWZ20

If 𝑓 is 𝑠-spread for
𝑠 = 𝑐 ⋅ log(𝑟𝑘) log log(𝑟𝑘) (3.1.14)

then 𝑓 contains 𝑟 disjoint sets.

Proposition 3.2

Main Lemma implies new sunflower lemma bounds.

Proof: Suppose we have

|𝑓 | ≥ 𝐶(𝑟, 𝑘)𝑘 = 𝑠𝑘 = (𝑐 ⋅ log(𝑟𝑘) log log(𝑟𝑘))𝑘 (3.1.15)

If there exists a 𝐼 such that |𝑓𝐼 | > 𝑠−|𝐼|, then we are done. We see

|𝑓𝐼 | ≥ 𝑠−|𝐼|(𝑐 ⋅ log(𝑟𝑘) log log(𝑟𝑘))𝑘 (3.1.16)
= 𝑠𝑘−|𝐼| (3.1.17)
≥ (𝑐 ⋅ log(𝑟(𝑘 − |𝐼|)) ⋅ log log(𝑟 ⋅ (𝑘 − |𝐼|)))𝑘−|𝐼| (3.1.18)

so we rely on induction for this proof. If∀𝐼, |𝑓𝐼 | < 𝑠−|𝐼| ⋅ |𝑓 |. Then, 𝑓 is 𝑠-spread ad bymain lemma
𝑓 contains 𝑟 disjoint sets. ■

3.2 Robust Sunflower Lemma
Lemma 3.3: Robust Sunflower Lemma (RSL)

Consider 𝑓 as 𝑠 − 𝑠𝑝𝑟𝑒𝑎𝑑, and 𝑤 is a random subset of [𝑛] of size ⌊𝑛𝑟 ⌋. Then,

𝑃𝑟𝑤[∃𝑗, 𝑆𝑗 ⊆ 𝑊] ≥ 1 − 1
2𝑟 (3.2.1)

It is natural to wonder why we need this different form of the Sunflower Conjecture. In fact,
this more robust RSL implies the Main lemma.
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The idea to the proof of RSL lies in the fact that we have flexibility in choosing 𝑊 (of size 𝑛/𝑟,
assuming divisibility), and we don’t have to choose it in one shot. We choose𝑊 as a sequence
of sets

𝑊 = 𝑉1 ∪𝑉2 ∪⋯∪𝑉𝑡 (3.2.2)

where each 𝑉𝑖 is a random subset of what’s left of size 𝑛
𝑟𝑡 .

TODO add lecture 9 from min 57.

Proposition 3.3: First Refined RSL

If 𝑓 is 𝑠-spread and 𝑉 is a random subset of ⌊ 𝑛
𝑟𝑡⌋. Then,

𝔼𝑗∈[𝑚],𝑉[|𝜒(𝑗, 𝑉)|] ≤ 𝑘 ⋅ (1 − 1
log 𝑠) (3.2.3)

Proposition 3.4: Second Refined RSL

If 𝑓 is 𝑠-spread, 𝑈 is a set and 𝑉 is a random subset of size ⌊ 𝑛
𝑟𝑡⌋. Then,

𝔼𝑗∈[𝑚],𝑉[|𝜒(𝑗, 𝑈 ∪ 𝑉)|] ≤ 𝔼𝑗,𝑈[|𝜒(𝑗, 𝑈)|] ⋅ (1 − 1
log 𝑠) (3.2.4)

TODO add lecture 9 from min 1:10

Proposition 3.5

RSL ⟹ MSL.

This stronger form of the conjecture comes in handy when we are doing induction, we can have
a more powerful hypothesis in the induction step.

Proof: Intuitively, consider the system to be a “spread” one, as then we can sample random
patches 𝑊’s of the total space [𝑛], each of size ⌊𝑛𝑟 ⌋ elements. We expect that a patch covers
some set 𝑆𝑖 with a reasonable chance ((1 − 1

2𝑟) stated in theorem). If this is the case, then if we
take 𝑟 patches, we immediately know

RSL ⟹

⎧{{{
⎨{{{⎩

𝑃𝑟[∃𝑗, 𝑆𝑗 ⊆ 𝑊1] = 𝑃𝑟[𝐸1] ≥ 1 − 1
2𝑟

𝑃𝑟[∃𝑗, 𝑆𝑗 ⊆ 𝑊2] = 𝑃𝑟[𝐸2] ≥ 1 − 1
2𝑟

⋮
𝑃𝑟[∃𝑗, 𝑆𝑗 ⊆ 𝑊𝑟] = 𝑃𝑟[𝐸𝑟] ≥ 1 − 1

2𝑟

(3.2.5)
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Then, we can take the union bound of events to bound 𝑃𝑟[everything above happens at the
same time] as

𝑃𝑟[𝐸1 ∪ 𝐸2 ∪⋯∪ 𝐸𝑟] ≤ 𝑃𝑟[𝐸1] + 𝑃𝑟[𝐸2] + ⋯+ 𝑃𝑟[𝐸𝑟] (3.2.6)

= 𝑟 ⋅ 1
2𝑟 (3.2.7)

= 1
2 (3.2.8)

> 0 (3.2.9)

So there ∃ 𝑟 disjoint sets. ■
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Chapter 4

Information Complexity and
Applications

4.1 Communication Complexity
Consider the setupwhere there are two parties Alice holding some information 𝑥 and Bob hold-
ing some other information 𝑦. The goal is to compute a function 𝑓 (𝑥, 𝑦) that possibly depends on
information from both parties. How we exchange these information for the sake of computing
𝑓 is called a protocol. The question now is “what is the best protocol in terms of number of bits
exchanged”? Few ways exist

Definition 4.1: Deterministic Protocol

Denoted as 𝐷𝑒𝑡, where we compute 𝑓 (𝑥, 𝑦) exactly.

Definition 4.2: Randomized Protocol

Denoted as 𝑅𝑎𝑛𝑑, where we want to output the correct answer with probability ≥, say, 9
10 .

Two types of randomized protocols exist, named in terms of if the random bits are shared
or kept private. a

aA good example to think about is fixing random seed for a pseudorandom number generator makes the
random bits public.

Definition 4.3: Protocol Complexities

• 𝐷𝑒𝑡(𝑓 ) = minimum number of bits needed to compute 𝑓 , exactly
• 𝑅𝑝𝑟𝑖𝑣𝑎𝑡𝑒

0−1 (𝑓 ) = minimum number of bits needed to compute 𝑓 with probability ≥ 0.9
and private random bits.

39
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• 𝑅𝑝𝑢𝑏𝑙𝑖𝑐
0−1 (𝑓 ) =minimum number of bits needed to compute 𝑓 with probability≥ 0.9 and

public random bits.

Proposition 4.1: Protocol Complexities’ Relationship

𝐷𝑒𝑡(𝑓 ) ≥ 𝑅𝑝𝑟𝑖𝑣𝑎𝑡𝑒
0−1 (𝑓 ) ≥ 𝑅𝑝𝑢𝑏𝑙𝑖𝑐

0−1 (𝑓 ) (4.1.1)

As an example, consider the equality test, where 𝐸𝑄 ∶ {0, 1}𝑛×{0, 1}𝑛 → {0, 1}where 𝐸𝑄(𝑥, 𝑦) =
1 if 𝑥 = 𝑦 and 0 otherwise. We have

• 𝐷𝑒𝑡(𝐸𝑄) ≤ 𝑛; further, we claim that 𝐷𝑒𝑡(𝐸𝑄) = 𝑛.
• 𝑅𝑝𝑢𝑏𝑙𝑖𝑐

0−1 (𝐸𝑄) ≤ 5 ≤ 𝒪(1), and

• 𝑅𝑝𝑟𝑖𝑣𝑎𝑡𝑒
0−1 (𝐸𝑄) ≤ 𝒪(log 𝑛) + 𝒪(1)

Proposition 4.2

𝑅𝑝𝑟𝑖𝑣𝑎𝑡𝑒
0−1 (𝐸𝑄) ≤ 𝑐 ⋅ log 𝑛 (4.1.2)

Theorem 4.1: Newman, 91

𝑅𝑝𝑟𝑖𝑣𝑎𝑡𝑒
0−1 (𝑓 ) ≤ 𝑅𝑝𝑢𝑏𝑙𝑖𝑐

0−1 (𝑓 ) + 𝒪(log 𝑛) (4.1.3)
and

𝐷𝑒𝑡(𝑓 ) ≤ 2𝒪(𝑅𝑝𝑟𝑖𝑣𝑎𝑡𝑒
0−1 (𝑓 )) (4.1.4)

4.2 Applications of Communication Complexity
4.2.1 NOF & NIHModels
Number on Forehead (NOF) and Number in Hand (NIH) models were proposed by Chandra,
Furst, Lipton in 83. In NIH, each party (say four parties A, B, C, D) holds onto their own piece
of information and they communicate and compute 𝑓 (𝑥1,… , 𝑥4) which is exactly our original
model. In NOF, however, each party have access to all the rest information except for their own
piece. In either case, communication is defined using a “Blackboard” model where each party
can come to the board and write down information to communicate. At the end of the day,
communication cost is the total number of bits written on the board.
Let’s now take a look at 𝑓 = 𝑍𝐸𝑅𝑂 where 𝑍𝐸𝑅𝑂(𝑥1,… 𝑥𝑚) = 1 if∑𝑚

𝑖=1 𝑥𝑖 = 0 and 0 otherwise.

Proposition 4.3
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𝐷𝑒𝑡𝑁𝑂𝐹(𝑍𝐸𝑅𝑂) ≤ log𝑁 +𝒪(1) (4.2.1)

Theorem 4.2: Tighter Version (CFL, 83)

𝐷𝑒𝑡𝑁𝑂𝐹(𝑍𝐸𝑅𝑂) ≤ 𝒪 (√log𝑁) (4.2.2)

4.2.2 AP-Free Coloring
Definition 4.4: Ap-Free Coloring

Coloring {−𝑁,−𝑁 + 1,… ,𝑁 − 1,𝑁} with 𝑝 colors such that there is no monochromatic
3-term arithmetic progression. i.e., no 𝑎, 𝑏, 𝑐 are of the same color such that 𝑏 − 𝑎 = 𝑐 − 𝑏.

4.3 Lower Bounds on Communication
Consider the disjunction operation, defined as

Definition 4.5: Two Party Disjunction

𝐷𝐼𝑆𝑇𝑛 ∶ {0, 1}𝑛×{0, 1}𝑛 → {0, 1}where𝐷𝐼𝑆𝑇𝑛(𝑥, 𝑦) is equal to 1 if at all indices 𝑖, 𝑥𝑖∧𝑦𝑖 = 0;
and zero otherwise.

Theorem 4.3

𝐷𝑒𝑡(𝐷𝐼𝑆𝑇𝑛) = 𝑛 𝑅0−1(𝐷𝐼𝑆𝑇𝑛) ≥ Ω(𝑛) (4.3.1)

4.4 Shannon’s Information Theory
We start with a measure for randomness.

Definition 4.6: Entropy of RV & Conditional Entropy

The entropy of a random variable measures how chaotic it is.

𝐻(𝑋) = ∑
𝑥∈𝑆𝑢𝑝𝑝(𝑋)

𝑃𝑟[𝑋 = 𝑥] ⋅ log2 (
1

𝑃𝑟[𝑋 = 𝑥]) (4.4.1)
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We can also measure entropy for a conditional random variable. In this case

𝐻(𝑋|𝑌) = 𝔼𝑦←𝑌[𝐻(𝑋|𝑌 = 𝑦)] = ∑
𝑦∈𝑆𝑢𝑝𝑝(𝑌)

𝑃𝑟[𝑌 = 𝑦] ⋅ 𝐻(𝑋|𝑌 = 𝑦) (4.4.2)

Proposition 4.4: Properties of Entropy

• 𝐻(𝑋,𝑌) = 𝐻(𝑌) + 𝐻(𝑋|𝑌) ≤ 𝐻(𝑌) + 𝐻(𝑋)

• 𝐻(𝑋|𝑌) ≤ 𝐻(𝑋)

Definition 4.7: Mutual Information

Mutual Information quantifies themutual dependence between two randomvariables, and
is defined as

𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋,𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) (4.4.3)

Proposition 4.5: Independent Mutual Information

If two random variables 𝑋,𝑌 are independent, then

𝐼(𝑋; 𝑌) = 0 (4.4.4)

where knowing information about one tells you zero additional information.

Definition 4.8: Conditional Mutual Information

𝐼(𝑋; 𝑌|𝑍) = 𝔼𝑍=𝛿[𝐼(𝑋|𝑍=𝛿; 𝑌|𝑍=𝛿)] (4.4.5)

Clearly, the conditional mutual information is equal to zero for independent random variables,
i.e. For

𝑋,𝑌, 𝑍 ∼ 𝐵𝑖𝑛(0, 1) 𝐼(𝑋; 𝑌) = 0 𝐼(𝑋; 𝑌|𝑍) = 0 (4.4.6)
It is more interesting to look at the case where some variables are dependent on each other.
Consider the case where 𝑋,𝑌 ∼ 𝐵𝑖𝑛(0, 1) with 𝑍 ∈ {0, 1} such that 𝑋 ⊕ 𝑌 ⊕ 𝑍 = 0.4.4.1 This
means

(𝑥, 𝑦, 𝑧) ∈

⎧{{{
⎨{{{⎩

(0, 0, 0)
(1, 1, 0)
(1, 0, 1)
(0, 1, 1)

(4.4.7)

4.4.1⊕means XOR.
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where if we discard the 𝑧 position, the distribution is uniform random across a two dimensional
binary space. In this case

𝐼(𝑋; 𝑌) = 𝐼(𝑋; 𝑍) = 𝐼(𝑌; 𝑍) = 0 (4.4.8)
while

𝐼(𝑋; 𝑌|𝑍) = 1 (4.4.9)

Definition 4.9: Entropy Chain Rule

𝐻(𝑋1,… ,𝑋𝑛) =
𝑛
∑
𝑗=1

𝐻(𝑋𝑗|𝑋1,… ,𝑋𝑗−1) (4.4.10)

where each 𝑋𝑗 in the expansion is conditioned on everything that comes before it.

Definition 4.10: Mutual Information - Vector RVs and RV

Consider random vector 𝑋 = (𝑋1,… ,𝑋𝑛). We can measure the mutual information be-
tween a random vector and a random variable.

𝐼(𝑋; 𝑍) = 𝐼(𝑋1,… ,𝑋𝑛; 𝑍) =
𝑛
∑
𝑗=1

𝐼(𝑋𝑗; 𝑍|𝑋1,… ,𝑋𝑗−1) (4.4.11)

Note that this formulation does not tell us about the mutual information between the com-
ponents of 𝑋. Rather, it only says about the relationship between 𝑋 and 𝑌.

Proposition 4.6: Sub-additivity of Entropy

𝐻(𝑋1,… ,𝑋𝑛) ≤ 𝐻(𝑋1) + 𝐻(𝑋2) + ⋯+𝐻(𝑋𝑛) (4.4.12)

4.5 Information Complexity
Definition 4.11: Distributional Communication Complexity

Consider some randomized protocol 𝜋 such that

∀𝑋,𝑌 𝑃𝑟∼𝜋[𝜋(𝑋, 𝑌) = 𝐷𝐼𝑆𝐽𝑛(𝑋, 𝑌)] ≥ 0.9 (4.5.1)

whichmeans we have some protocol that can answer𝐷𝐼𝑆𝐽𝑛(𝑋, 𝑌) correctly 90% of the time
then ( ⟹ ) any distribution 𝜇 on 𝑋 × 𝑌 has such that

𝑃𝑟∼𝜋;(𝑥,𝑦)←∼𝜇[𝜋(𝑋, 𝑌) = 𝐷𝐼𝑆𝐽𝑛(𝑋, 𝑌)] ≥ 0.9 (4.5.2)

which means we will be able to answer 𝐷𝐼𝑆𝐽𝑛(𝑋, 𝑌) correctly 90% of the time for any ran-
dom input.
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English For every question that I throw at you, if you have 90% chance answering it
correctly, then that means if I ask a random question you will succeed 90% of the time. The
implied is a weaker statement but it suffices for our purpose.

Distributional Communicational Complexity

𝑅0−1,𝜇(𝐷𝐼𝑆𝐽𝑛) = minimum # of bits needed to achieve above guarantee. (4.5.3)

Examples Consider this 𝜇. 𝑋 is a random string where last 𝑛/2 bits are zero. 𝑌 is a random
string where the first 𝑛/2 bits are zero. Then,

𝑅0−1,𝜇(𝐷𝐼𝑆𝐽𝑛) = 1 (4.5.4)

because they are always disjoint, and they can always output ‘yes disjoint’ and they will be
correct.

As a second example, consider 𝜇 such that𝑋 and 𝑌 are independent completely random strings
∈ {0, 1}𝑛. In this case, it is extremely likely that the two random strings have some overlap.
Then, 𝐷𝐼𝑆𝐽𝑛 becomes very easy to answer, as both parties only have to answer ‘not disjoint’.
Thus

𝑅0−1,𝜇(𝐷𝐼𝑆𝐽𝑛) = 1 (4.5.5)

Note that
𝑃𝑟[𝐷𝐼𝑆𝐽𝑛(𝑋, 𝑌) = 1] = (3

4)
𝑛

(4.5.6)

but for reasonably large 𝑛 this converges to zero.

Definition 4.12: Information Cost of a Protocol

Consider 𝑥, 𝑦 ← 𝜇.
𝐼𝐶(𝜋, 𝜇) = 𝐼(𝑋; 𝜋|𝑌) + 𝐼(𝑌; 𝜋|𝑋) (4.5.7)

which is the total amount of new information that both parties learnt from the protocol.
To make sure that the quantification is on new information learnt, we condition out each
parties own information.

Proposition 4.7

𝐼𝐶(𝜋, 𝜇) ≤ |𝜋| (4.5.8)
which says that the information that both parties learnt is at most the length of the protocol.

Proof:
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Intuitive

𝐼(𝑋; 𝜋|𝑌) ≤ 𝐻(𝜋) (4.5.9)

and

𝐼(𝑌; 𝜋|𝑋) ≤ 𝐻(𝜋) (4.5.10)

then
𝐼𝐶(𝜋, 𝜇) = 𝐼(𝑋; 𝜋|𝑌) + 𝐼(𝑌; 𝜋|𝑋) ≤ 2𝐻(𝜋) ≤ 2 ⋅ |𝜋| (4.5.11)

but since in each individual round only one party can learn new information (the speaker does
not learn new information), with some careful book keeping and chain rule, we can derive
𝐼𝐶(𝜋, 𝜇) ≤ |𝜋|.

Proof Sketch

𝐼𝐶(𝜋, 𝜇) = 𝐼(𝑋; 𝜋|𝑌) + 𝐼(𝑌; 𝜋|𝑋) (4.5.12)
= 𝑂(𝑋;𝜋1,… , 𝜋𝑟|𝑌) + 𝐼(𝑌; 𝜋1,… , 𝜋𝑟|𝑋) (4.5.13)

=
𝑟

∑
𝑗=1

[𝐼(𝑋; 𝜋𝑗|𝑌, 𝜋, …,𝜋𝑗−1) + 𝐼(𝑌; 𝜋𝑗|𝑌, 𝜋, …,𝜋𝑗−1)] (4.5.14)

≤
𝑟

∑
𝑗=1

𝐻(𝜋𝑗|𝜋1,… , 𝜋𝑗−1) (4.5.15)

= 𝐻(𝜋) (4.5.16)

where again we utilize the fact that in each round only one person learns new information.

Definition 4.13: Information Cost of Function

... takes a max-min formulation

𝐼𝐶0−1(𝑓 ) = max
all dist 𝜇

𝐼𝐶𝜇(𝑓 ) (4.5.17)

where (consider 𝑃 to be the set of protocols that can compute 𝑓 with a accuracy of 0.9)

𝐼𝐶𝜇(𝑓 ) = min
𝜋∈𝑃

𝐼𝐶(𝜋, 𝜇) (4.5.18)

To summarize,
𝐼𝐶(𝑓 ) = max𝜇 min𝜋 𝐼𝐶(𝜋, 𝜇) (4.5.19)

Proposition 4.8

𝐼𝐶0−1(𝑓 ) ≤ 𝑅0−1(𝑓 ) (4.5.20)
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Definition 4.14: Functions of Multi-variate Input/Output

We had 𝑓 ∶ 𝐴 × 𝐵 → {0, 1}. We now define

𝑓⊗𝑛 ∶ 𝐴𝑛 × 𝐵𝑛 → {0, 1}𝑛 (4.5.21)

where 𝑓⊗𝑛((𝑎1, ̇,𝑎𝑛), (𝑏1,… , 𝑏𝑛)) = compute all answers.

Theorem 4.4

𝐼𝐶(𝑓⊗𝑛) ≥ 𝑛 ⋅ 𝐼𝐶(𝑓 ) (4.5.22)
and with equality at limit

lim𝑛→∞
𝐼𝐶(𝑓⊗𝑛)

𝑛 = 𝐼𝐶(𝑓 ) (4.5.23)

This theorem intuitively says that you cannot make things up: there is no savings for mul-
tivariate 𝑓 , you still have to compute everything.

Theorem 4.5: BBCR10

𝑛 ⋅ 𝑅0−1(𝑓 ) ≤ 1
√𝑛𝑅0−1(𝑓⊗𝑛) (4.5.24)

4.6 Proof of Thm.: Lower Bounds on Communication
We now take a look at the big picture. Recall that we wanted to show 𝑅0−1(𝐷𝐼𝑆𝐽𝑛) ≥ Ω(𝑛) and
we know the following

• 𝑅0−1(𝐷𝐼𝑆𝐽𝑛) ≥ 𝐼𝐶(𝐷𝐼𝑆𝐽𝑛)

• (†) 𝐼𝐶𝜇(𝐷𝐼𝑆𝐽𝑛) ≥ 𝑛 ⋅ 𝐼𝐶𝜇(𝑁𝐴𝑁𝐷) 4.6.1

• (‡) 𝐼𝐶𝜇(𝑁𝐴𝑁𝐷) ≥ 0.01

We first show (†) for a specific distribution, called Razborov’s Distribution

Definition 4.15: Razborov’s Distirbution

A tuple shaped random variable (𝑋, 𝑌) such that (𝑥, 𝑦) ∼ (𝑋, 𝑌) has the following proba-

4.6.1Notice that𝐷𝐼𝑆𝐽𝑛(𝑋,𝑌) = ⋀𝑛
𝑖=1 𝑁𝐴𝑁𝐷(𝑥𝑖, 𝑦𝑖), which is why we introduce𝑁𝐴𝑁𝐷 function in this chain.
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bility density function

𝑝𝑑𝑓𝑅𝑎𝑧𝑏𝑜𝑟𝑜𝑣(𝑥, 𝑦) =

⎧{{{
⎨{{{⎩

1/3 (𝑥, 𝑦) = (0, 0)
1/3 (𝑥, 𝑦) = (0, 1)
1/3 (𝑥, 𝑦) = (1, 0)
0 (𝑥, 𝑦) = (1, 1)

(4.6.1)

Notice that under this definition, each person’s marginal distribution is a bit biased.

Theorem 4.6: An Upper-bound, Piece 1

If there exists a protocol 𝜋 for𝐷𝐼𝑆𝐽𝑛 that is correct on all 𝑥, 𝑦with probability 0.9, then there
exists a protocol 𝜋′ for 𝑁𝐴𝑁𝐷 that is correct on all 𝑥, 𝑦 with probability 0.9, and

𝐼𝐶(𝜋′, 𝜇) ≤ 1
𝑛 ⋅ 𝐼𝐶(𝜋, 𝜇𝑛) (4.6.2)

Theorem 4.7: Piece 2

If 𝜋′ is a protocol that is correct on all 𝑥, 𝑦 with prob 0.9, then

𝐼𝐶(𝜋′, 𝜇) ≥ 0.01 (4.6.3)

Definition 4.16: Information Cost of Function

Consider function 𝑓 ∶ 𝑋 × 𝑌 → {0, 1}, and some distribution 𝜇 over 𝑋 × 𝑌. Define

𝐼𝐶𝜇,𝜀 = inf
protocols 𝜋 that compute 𝑓 with error ≤ 𝜀

𝐼𝐶(𝜋, 𝜇) (4.6.4)

To be more specific, the protocol 𝜋 here is such that

∀(𝑥, 𝑦), 𝑃𝑟[𝜋(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦)] ≥ 1 − 𝜀 (4.6.5)

Finally define information cost of a function as

𝐼𝐶𝜀(𝑓 ) = max𝜇 𝐼𝐶𝜇,𝜀(𝑓 ) (4.6.6)

We will use a handy notation for distributions across 𝑛 composite functions 𝑓⊗𝑛. For 𝜎 , a dis-
tribution over {0, 1}, we consider 𝜇 ≡ 𝜎𝑛 as a distribution over {0, 1}𝑛 × {0, 1}𝑛.

Proposition 4.9

• 𝐼𝐶𝜎,𝜀(𝑁𝐴𝑁𝐷) ≤ 1
𝑛 ⋅ 𝐼𝐶𝜎𝑛,𝜀(𝐷𝐼𝑆𝐽𝑛)
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• Ω𝜀(1) = 𝐼𝐶𝜎,𝜀(𝑁𝐴𝑁𝐷)



Chapter 5

Extension Complexity

5.1 LPs & Its Two Views
Extension Complexity pertains how much power lies within linear programs. First, we state
the canonical form of Linear Programs (LP).

Definition 5.1: Linear Program

A linear program take the following vectorized canonical form

maximize c⊤x (5.1.1)
subject to 𝐴x ≤ b (5.1.2)

We here illustrate the two views of Linear Programs. First, we consider the dimension to opti-
mize over is 𝑛 = 2. Then, if we unwrap the vectorization we have the constraints

⎡⎢⎢
⎣

𝑎11𝑥1 + 𝑎12𝑥2
⋮

𝑎𝑚1 𝑥1 + 𝑎𝑚2 𝑥2

⎤⎥⎥
⎦
≤ ⎡⎢⎢

⎣

𝑏1
⋮
𝑏𝑚

⎤⎥⎥
⎦

(5.1.3)

Now, if we plot the lines corresponding to the linear constraints, we will get something like
Figure 5.1. Considering the fact that we are optimizing over a linear objective, the maximizer
must appear on the vertices of the formed polytope. We call the region bounded in between all
the constraints the feasible region of the Linear Program and each edge segments as “facets”.
Two views arise in this formulation.

Polyhedron View says that the feasible region is the intersection of the linear inequalities.
Notice that we are strictly limiting ourselves to the intersections here, no area included.

Polytope View says that the feasible region can be stated as
𝐶𝑜𝑛𝑣𝑒𝑥 − 𝐻𝑢𝑙𝑙{𝑣1,… 𝑣6} (5.1.4)

where we define

49



50 CHAPTER 5. EXTENSION COMPLEXITY

Figure 5.1: Plotted LP constraints

Definition 5.2: Convex Hull

Given 𝑆 = {𝑣1,… , 𝑣𝑁}, then

𝐶𝑜𝑛𝑣𝑒𝑥 − 𝐻𝑢𝑙𝑙(𝑆) =
⎧{
⎨{⎩
𝑥 ∶ 𝑥 = ∑

𝑖
𝜆𝑖𝑣𝑖, 𝑠.𝑡. 𝜆𝑖 ≥ 0,∑

𝑖
𝜆𝑖 = 1

⎫}
⎬}⎭

(5.1.5)

Remark: The formed set is convex, since for all 𝑥, 𝑦 ∈ 𝑆, so does (𝑥 + 𝑦)/2 ∈ 𝑆.

Now that we defined the two formulations, we state the equivalence.
max⟨c, x⟩

𝑥𝑖 ∈ {0, 1}𝑛

∑𝑥𝑖 ≤ 𝑛/2

⎫}}
⎬}}⎭

≡
⎧{{
⎨{{⎩

max⟨c, x⟩
0 ≤ 𝑥𝑖 ≤ 1

∑𝑥𝑖 ≤ 𝑛/2
(5.1.6)

With this equivalent, we have only 2𝑛 + 1 facets to optimize over, and hence we can solve it
efficiently.

5.2 Extension Complexity and Cross Polytope
The Cross Polytope example will help us find and define the extension complexity “gap”. We
start with the definition

Definition 5.3: Cross Polytope

𝐶𝑟𝑜𝑠𝑠 − 𝑃𝑜𝑙𝑦𝑡𝑜𝑝𝑒 ≡ 𝐶𝑜𝑛𝑣𝑒𝑥 − 𝐻𝑢𝑙𝑙{𝑒1, −𝑒1, 𝑒2, −𝑒2,… , 𝑒𝑛, −𝑒𝑛} (5.2.1)
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where 𝑒𝑖 ∈ {0, 1}𝑛 is the standard indicator vector.

Notice that here we essentially have a hypercube, in 𝑛 dimensions, meaning it needs 2𝑛 inequal-
ities to specify. But also, from the definition, we see there are only 2𝑛 vertices. Hence, there is
a big gap between number of vertices and number of inequalities is.
We now take a look at the cross polytope in an alternative view

𝐶𝑟𝑜𝑠𝑠 − 𝑃𝑜𝑙𝑦𝑡𝑜𝑝𝑒 =
⎧{
⎨{⎩
x ∶

𝑛
∑
𝑖=1

|𝑥𝑖| ≤ 1
⎫}
⎬}⎭

(5.2.2)

= {x ∶ ∃y, 𝑠.𝑡. ∑𝑦𝑖 ≤ 1 ∧ −𝑦𝑖 ≤ 𝑥𝑖 ≤ 𝑦𝑖} (5.2.3)

where notice that by adding a new variable y, we are able to describe cross-polytope with only
2𝑛 + 1 inequalities. We define this gap as the extension complexity. Formally,

Definition 5.4: Extension Complexity (Yannakaskis, 88)

The extension complexity of a convex polytope 𝑃 is the smallest number of facets among
convex polytopes 𝑄 that have 𝑃 as a projection. In this context, 𝑄 is called an extended
formulation of 𝑃; and it may have much higher dimension than 𝑃.
In English: we are given the freedom to add variables. Now, with this power, we want to
minimize the number of inequalities. What is the minimum number of inequalities needed
to describe the initial problem in this setting?
We denote extension complexity as 𝑋𝐶(𝑃) = minimum number of facets of 𝑄 over all ex-
tensions 𝑄 of 𝑃.

Following the notation appeared in the definition, we consider 𝑃 a polytope

𝑃 = 𝐶𝑜𝑛𝑣𝑒𝑥 − 𝐻𝑢𝑙𝑙{𝑣1,… , 𝑣𝑛} (5.2.4)

and 𝑄 ⊆ ℝ𝑛+𝑚 is an extension of 𝑃 if

𝑃 = {x ∶ ∃y, (x, y) ∈ 𝑄} (5.2.5)

To rephrase from the definition, the idea here is that there are many possible extensions (𝑄).
Maybe some𝑄 can be defined with fewer inequalities and define 𝑋𝐶(𝑃) as the minimum num-
ber of inequalities needed across all extensions.
Notice that the extended form can easily be written down as a equivalent form of the original
optimization goal

max⟨c, x⟩
x ∈ 𝑃

≡
max⟨(c, 0), (x, y)⟩

(x, y) ∈ 𝑄
(5.2.6)

Recall at the cross polytope example we presented at the beginning of this section. We have
shown the upper bound

𝑋𝐶(𝐶𝑟𝑜𝑠𝑠 − 𝑃𝑜𝑙𝑦𝑡𝑜𝑝𝑒) ≤ 2𝑛 + 1 (5.2.7)
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5.3 Examples
5.3.1 Permutahedron
We start by defining a permutahedron.

Definition 5.5: Permutahedron

As the name suggests, a permutahedron is formed by vertices such that they are permuta-
tions of each other.

ℝ𝑛 ⊇ 𝑃𝑛 = 𝐶𝑣𝑥{(1, 2, 3,… , 𝑛), (2, 1, 3,… , 𝑛),… } (5.3.1)

which is a convex hull formed by 𝑛! vertices.

For a permutahedron, we find that

Proposition 5.1: Facets and Vertices of Permutahedron

#𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑃𝑛) = 𝑛! #𝑓 𝑎𝑐𝑒𝑡𝑠(𝑃𝑛) = 2𝑛 (5.3.2)

Now, suppose we wish to optimize over this permutahedron set 𝑃𝑛, we have

max ⟨c, x⟩
⟨a1, x⟩

⋮
⟨a𝑁 , x⟩

where 𝑥 ∈ 𝑃𝑛

(5.3.3)

Proposition 5.2: Bounds on Permutahedron

Birkoff-Von Neuman Theorem states that

𝑋𝐶(𝑃𝑛) ≤ 𝑛2 (5.3.4)

and this is later improved by Goemans to

𝑋𝐶(𝑃𝑛) ≤ 𝒪(𝑛 log 𝑛) (5.3.5)

5.3.2 Spanning Tree Polytope
Definition 5.6
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The spanning tree polytope is defined as follows

ℝ𝐶𝑛
2 ⊇ 𝑆𝑃𝑛 = 𝐶𝑣𝑥(indicator vectors of spanning tree) (5.3.6)

The definition above seem rather abstract. Here is an example. Consider a graph with four
nodes. Then, there are at most 𝐶𝑛

2 = 𝐶4
2 = 6 edges in this graph, and then we can represent the

edges with indicators. I.e., we have possible edges

(𝑎, 𝑏) (𝑎, 𝑐) (𝑎, 𝑑) (𝑏, 𝑐) (𝑏, 𝑑) (𝑐, 𝑑) (5.3.7)

and it suffices to use indicators to denote which edges are chosen.
For example, consider the following graph which looks like a chain

𝑎 − 𝑏 − 𝑐 − 𝑑 (5.3.8)

it takes indicator form
(1, 0, 0, 1, 0, 1) (5.3.9)

we verify that a three edged graph has three 1’s in its corresponding indicator vector.
Handling weighted graph is simple, we only need to replace all the 0’s with∞’s to signify that
choosing them incurs infinity penalty; we also replace the 1’s with respective weights of the
edges.
In the classic Minimum Spanning Tree (MST) problem, we aim to find a set of edges in a graph
such that it forms a tree and has the lowest total weight. This problem can be translated into LP
with the help of our indicator formulation,

𝑀𝑆𝑇 ≡
min ⟨w𝐺, x⟩

x ∈ 𝑆𝑃𝑛
≡ −(max −⟨w𝐺, x⟩

x ∈ 𝑆𝑃𝑛
) (5.3.10)

Proposition 5.3: Vertices and Facets in Spanning Tree Polytope

#𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑆𝑃𝑛) = #𝑡𝑟𝑒𝑒𝑠 #𝑓 𝑎𝑐𝑒𝑡𝑠(𝑆𝑃𝑛) = 2𝑛 (5.3.11)

Proposition 5.4: Extension Complexity of Spanning Tree Polytope

𝑋𝐶(𝑆𝑃𝑛) = 𝒪(𝑛3) (5.3.12)

5.3.3 TSP Polytope
Definition 5.7: TSP Problem

Given a weighted graph, 𝐺 = (𝑉, 𝐸), find the tour of a least total weight; where tour is
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defined as a loop inside the graph that visits every vertex exactly once, finishing at the
starting position.

Definition 5.8: TSP Polytope

ℝ𝐶𝑛
2 ⊇ 𝐶𝑣𝑥(all valid tours encoded with indicator vectors) (5.3.13)

where the definition utilizes the indicator trick for specifying graphswe say in the previous
spanning tree polytope example.
With this definition, our TSP problem turns into the following optimization problem

(min ⟨𝑊𝐺, x⟩
x ∈ 𝑇𝑆𝑃𝑛

) ≡ find minimum tour of 𝐺 (5.3.14)

Proposition 5.5: Vertices and Facets of TSP Polytope

#𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠(𝑇𝑆𝑃𝑛) = 𝑛! #𝑓 𝑎𝑐𝑒𝑡𝑠(𝑇𝑆𝑃𝑛) = 2𝑛 (5.3.15)

In the previous examples, we were lucky to find polynomial extension complexities. However,
for TSP, a known NP-Complete problem, we are not so lucky. The question then to ask is what
is 𝑋𝐶(𝑇𝑆𝑃𝑛)?

Theorem 5.1: Y88, Symmetric Extension Complexity

𝑋𝐶𝑆𝑦𝑚𝑚(𝑇𝑆𝑃𝑛) ≥ 2Ω(𝑛) (5.3.16)
i.e., is at least exponential. If we restrict the 𝑇𝑆𝑃𝑛 such that the graphs inside are symmetric,
then we cannot get much savings.

The remaining question to ask is what is 𝑋𝐶(𝑇𝑆𝑃𝑛)? This was left as an open question in the
original paper.

5.4 FMPTW12 & Alternative Proof
5.4.1 Non-Negative Rank and Extension Complexity
Theorem 5.2: Fiorini, Massor, Prokutta, Tiwary, Wolf (FMPTW12)

𝑋𝐶(𝑇𝑆𝑃𝑛) ≥ 2Ω(𝑛) (5.4.1)
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Definition 5.9: Slack Matrix

Consider the polytope, written in the forms both as a convex hull and as a polyhedron

𝑃 = 𝐶𝑣𝑥 (x1,… , x𝑁) = {x ∶ ⟨𝑎𝑗, x⟩ ≤ 𝑏𝑗 , 𝑗 = 1,… ,𝑁} (5.4.2)

Whenever we have the above, Slack Matrix 𝑆 ∈ ℝ𝑁×𝑀 can then be defined as

𝑆[𝑖, 𝑗] = 𝑏𝑗 − ⟨𝑎𝑗, 𝑥𝑖⟩ (5.4.3)

i.e. “how much slack is there in the 𝑗-th inequality for vertex 𝑖.

Non- negative Property We note that the slack matrix has entries 𝑆[𝑖, 𝑗] ≥ 0,∀𝑖, 𝑗.

Definition 5.10: Rank

Recall from LA that the rank of a matrix 𝑟𝑎𝑛𝑘(𝑆) is either of the following
• dimension of the space spanned by the rows of 𝑆, the row space
• dimension of the space spanned by the columns of 𝑆, the column space
• minimum 𝑟 such that 𝑆 can bewritten as 𝑆 = 𝑈𝑉⊤, where𝑈 ∈ ℝ𝑁×𝑟 and𝑉⊤ ∈ ℝ𝑟×𝑀.

Definition 5.11: Non Negative Rank (NNR)

If we have a non negative matrix, the NNR is a similar notion. Formally, if we have matrix
𝑆 ≥ 0, then

𝑛𝑛𝑟(𝑆) = min𝑟 {𝑆 = 𝑈𝑉⊤ (5.4.4)

where ℝ𝑁×𝑟 ∋ 𝑈 ≥ 0 and ℝ𝑟×𝑀 ∋ 𝑉⊤ ≥ 0. Notice that here we added an additional
requirement for the factorized matrices to also be non negative.

Proposition 5.6

𝑟𝑎𝑛𝑘(𝑆) ≤ 𝑛𝑛𝑟(𝑆) ≤ min(𝑁,𝑀) (5.4.5)

Theorem 5.3: NNR and XC, Y88

If 𝑃 is a polytope and 𝑆 is a slack matrix of 𝑃, then

𝑋𝐶(𝑃) = 𝑛𝑛𝑟(𝑆) (5.4.6)
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This theorem relates something geometric (XC) to a very concrete computable value. We will
use this to prove Theorem 5.2, i.e. we try to show 𝑛𝑛𝑟 (slack matrix of 𝑇𝑆𝑃𝑛) = 2Ω(𝑛). We will
not show this exactly. Instead, we show it for another polytope, which has a reduction to 𝑇𝑆𝑃𝑛.
We leave that to later part of this chapter. Let’s show Theorem 5.3.
Proof:We show it from two inequalities. First, we show

𝑋𝐶(𝑃) ≤ 𝑛𝑛𝑟(𝑆) (5.4.7)
To be exact, we want to show: if 𝑛𝑛𝑟(𝑆) = 𝑟, then there is an extension of 𝑃with≤ 𝑟 inequalities.
From definitions, we can write

𝑆 = 𝑈𝑉, 𝑈 ≥ 0,𝑉 ≥ 0,𝑈 ∈ ℝ𝑁×𝑟, 𝑉 ∈ ℝ𝑟×𝑀 (5.4.8)
Call the rows of 𝑈 as 𝑢𝑖 and the columns of 𝑉 as 𝑣𝑗. Then,

𝑏𝑗 − ⟨𝑎𝑗, x𝑖⟩ = 𝑆[𝑖, 𝑗] = ⟨𝑢𝑖, 𝑣𝑗⟩ (5.4.9)
where 𝑖, 𝑗 corresponds to indices of vertices and inequalities respectively. We can massage the
above equality to form

⟨𝑎𝑗, 𝑥𝑖⟩ + ⟨𝑢𝑖, 𝑣𝑗⟩ = 𝑏𝑗 (5.4.10)
⟺ ⟨(𝑎𝑗, 𝑣𝑗), (𝑥𝑖, 𝑢𝑖)⟩ = 𝑏𝑗 (5.4.11)

Recall definition of 𝑃,
𝑃 = {𝑥 ∶ 𝐴𝑥 ≤ 𝑏} (5.4.12)

Now we define a new extension
𝑄 = {(𝑥, 𝑢) ∶ 𝐴𝑥 + 𝑉𝑢 = 𝑏, 𝑢 ≥ 0} = {(𝑥, 𝑢) ∶ ⟨𝑎𝑗, 𝑥⟩ + ⟨𝑣𝑗, 𝑢⟩ = 𝑏𝑗, 𝑢 ≥ 0} (5.4.13)

and we claim that this 𝑄 is an extension of 𝑃. For verification, we need to check (the definition
∀𝑥 ∈ 𝑃, ∃𝑛 s.t. 𝐴𝑥 + 𝑉𝑢 = 𝑏 (5.4.14)

which clearly is the case.
Now, we show the other direction inequality, 𝑛𝑛𝑟(𝑆) ≤ 𝑋𝐶(𝑃). Suppose we have an extension
𝑄 of 𝑃 with few inequalities:

𝑄 = {(𝑥, 𝑦) ∶ 𝐸𝑥 + 𝐹𝑦 ≤ 𝑑} (5.4.15)
From definitions, if 𝑄 is indeed an extension of 𝑃, then

𝑃 = {𝑥 ∶ ∃𝑦, (𝑥, 𝑦) ∈ 𝑄} (5.4.16)
= {𝑥 ∶ ⟨𝑎𝑗, 𝑥⟩ ≤ 𝑏𝑗, ∀𝑗 = 1,… ,𝑚} (5.4.17)
= 𝐶𝑣𝑥{𝑥1,… , 𝑥𝑁} (5.4.18)

The above equality of sets implies
if (𝑥, 𝑦) ∈ 𝑄, then ⟨𝑎𝑗, 𝑥⟩ ≤ 𝑏𝑗 (∀𝑗) (5.4.19)

≡ (𝑥, 𝑦) ∈ 𝑄 ⟹ ⟨(𝑎𝑗, 0), (𝑥, 𝑦)⟩ ≤ 𝑏𝑗 (∀𝑗) (5.4.20)
≡ 𝐸𝑥 + 𝐹𝑦 ≤ 𝑑 ⟹ ⟨(𝑎𝑗, 0), (𝑥, 𝑦)⟩ ≤ 𝑏𝑗 (∀𝑗) (5.4.21)

We introduce the following Lemma
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Lemma 5.1: Strong Farkas’ Lemma

⟨(𝑒1, 𝑓1), (𝑥, 𝑦)⟩ ≤ 𝑑1
⋮

⟨(𝑒𝑟, 𝑓𝑟), (𝑥, 𝑦)⟩ ≤ 𝑑𝑟

⎫}}
⎬}}⎭

⟹ ⟨𝑔, (𝑥, 𝑦)⟩ ≤ ℎ (5.4.22)

if and only if ∃𝑢1,… , 𝑢𝑟 ≥ 0, 𝑠.𝑡.

𝑔 = 𝑢1(𝑒1, 𝑓1) + 𝑢2(𝑒2, 𝑓2) + …𝑢𝑛(𝑒𝑟, 𝑓𝑟) (5.4.23)

and
ℎ = 𝑢1𝑑1 + 𝑢2𝑑2 +…𝑢𝑟𝑑𝑟 (5.4.24)

Matrix Form (SFL) If 𝐸𝑥 + 𝐹𝑦 ≤ 𝑑 ⟹ ⟨𝑔, (𝑥, 𝑦)⟩ ≤ ℎ, then ∃𝑢 ≥ 0 such that

𝑢⊤ [[𝐸] [𝐹]] = 𝑔 ; 𝑢⊤𝑑 = ℎ (5.4.25)

Recap: we have
𝐸𝑥 + 𝐹𝑦 ≤ 𝑑 ⟹ ⟨(𝑎𝑗, 0), (𝑥, 𝑦)⟩ ≤ 𝑏𝑗 (5.4.26)

in particular, this implies ∃𝑣𝑗 such that

𝑣⊤𝑗 [[𝐸] [𝐹]] = 𝑎𝑗
𝑣⊤𝑗 𝑑 = 𝑏𝑗

(5.4.27)

Define a new vector 𝑢𝑖 = 𝑑 − 𝐸𝑥𝑖 − 𝐹𝑦𝑖 ∈ ℝ𝑟. We claim that (1) 𝑢𝑖 ≥ 0, 𝑣𝑗 ≥ 0 as vectors and (2)
⟨𝑢𝑖, 𝑣𝑗⟩ = 𝑏𝑗 − ⟨𝑎𝑗, 𝑥𝑖⟩ = 𝑆[𝑖, 𝑗].
Now, we plug in 𝑢𝑖 into the views we had previously, to find

𝑣⊤𝑗 [[𝐸] [𝐹]] = (𝑎𝑗, 0) 𝑣⊤𝑗 𝑑 = 𝑏𝑗 𝑢𝑖 = 𝑑 − 𝐸𝑥𝑖 − 𝐹𝑦𝑖 (5.4.28)

Then,

𝑣⊤𝑗 𝑢𝑖 = ⟨𝑣𝑖, 𝑑⟩ − 𝑣⊤𝑗 [[𝐸] [𝐹]] [[𝑥𝑗][𝑦𝑗]
] (5.4.29)

= 𝑏𝑗 − ⟨𝑎𝑗, 𝑥𝑖⟩ (5.4.30)

This implies
𝑛𝑛𝑟(𝑆) ≤ 𝑟 = 𝑋𝐶(𝑃) (5.4.31)

Therefore,
𝑛𝑛𝑟(𝑆) = 𝑋𝐶(𝑃) (5.4.32)

as wanted. ■

With this theorem, in order to study extension complexity, we only need to study non negative
rank.
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5.4.2 Proof with Correlation Polytope
Definition 5.12: Correlation Polytope

A correlation polytope is

𝐶𝑃𝑛 = 𝐶𝑣𝑥 ({𝑎𝑎⊤ ∶ 𝑎 ∈ {0, 1}𝑛}) (5.4.33)

Proposition 5.7

We can write any graph optimization problem as a linear optimization problem on 𝐶𝑃𝑛.

Proposition 5.8

𝑋𝐶(𝐶𝑃𝑛) ≤ 𝑋𝐶(𝑇𝑆𝑃𝑛) (5.4.34)

Theorem 5.4: Extension Complexity of Correlation Polytope (FMPTW12)

𝑋𝐶(𝐶𝑃𝑛) ≥ 2Ω(𝑛) (5.4.35)

Definition 5.13: Partial Slack Matrix

Suppose we have polytope 𝑃 ∈ ℝ𝑁 . We have another polytope which has containment
relationship 𝑃 ⊆ 𝑃′, say defined as 𝑃′ ≡ {𝑥 ∶ 𝐶𝑥 ≤ 𝑑}. Then, every vertex / point in the
polytope 𝑃must also satisfy the definition of 𝑃′.
Define

𝑆𝑙𝑎𝑐𝑘(𝑃, 𝑃′)[𝑖, 𝑗] = 𝑑𝑗 − ⟨𝑐𝑗, 𝑥𝑖⟩ ≥ 0 (5.4.36)

Y88 also showed that if 𝑃 ⊆ 𝑃′, then

𝑋𝐶(𝑃) ≥ 𝑛𝑛𝑟(𝑆𝑙𝑎𝑐𝑘(𝑃, 𝑃′)) (5.4.37)

Hence, if are smart or lucky enough, we can find a 𝑃′ that results in a easy to study 𝑆𝑙𝑎𝑐𝑘(𝑃, 𝑃′)
partial slack matrix instead. In FMPTW12, they proposed to construct the following 𝑃′. For
every 𝑏 ∈ {0, 1}𝑛, let 𝐶𝑏 = 2 ⋅ diag(𝑏) − 𝑏𝑏⊤. Then, define

𝑃′ = {𝑥 ∈ ℝ𝑛×𝑛 ∶ ⟨𝐶𝑏, 𝑥⟩ ≤ 1, ∀𝑏 ∈ {0, 1}𝑛} (5.4.38)

Proposition 5.9

We claim that the 𝑃′ composed this way is a superset of the 𝐶𝑃𝑛 polytope that we want to



5.4. FMPTW12 & ALTERNATIVE PROOF 59

study.
𝐶𝑃𝑛 ⊆ 𝑃′ (5.4.39)

Proof: From definition,
𝐶𝑃𝑛 = 𝐶𝑣𝑥({𝑎𝑎⊤ ∶ 𝑎 ∈ {0, 1}𝑛}) (5.4.40)

We need to show that ⟨𝑎𝑎⊤, 𝐶𝑏⟩ ≤ 1 for all 𝑎 ∈ {0, 1}𝑛. Note that

⟨𝑎𝑎⊤, 𝐶𝑏⟩ ≤ 1 (5.4.41)
⟺ ⟨𝑎𝑎⊤, 2 ⋅ diag(𝑏) − 𝑏𝑏⊤⟩ ≤ 1 (5.4.42)
⟺ ⟨𝑎𝑎⊤, 2 ⋅ diag(𝑏)⟩ − ⟨𝑎𝑎⊤, 𝑏𝑏⊤⟩ ≤ 1 (5.4.43)
⟺ 2|𝑎 ∩ 𝑏| − (𝑎⊤𝑏)2 ≤ 1 (5.4.44)
⟺ 2|𝑎 ∩ 𝑏| − |𝑎 ∩ 𝑏|2 ≤ 1 (5.4.45)
⟺ 0 ≤ 1 + |𝑎 ∩ 𝑏|2 − 2|𝑎 ∩ 𝑏| = (𝑎 − |𝑎 ∩ 𝑏|)2 (5.4.46)

where the notation |𝑎 ∩ 𝑏| denotes the number of entries where 𝑎 and 𝑏 intersect. ■

In the notation 𝑆𝑙𝑎𝑐𝑘(𝑃, 𝑃′),
• 𝑃 has 2𝑛 vertices corresponding to 𝑎 ∈ {0, 1}𝑛, and
• 𝑃′ has 2𝑛 inequalities corresponding to 𝑏 ∈ {0, 1}𝑛.

Recall that the slack matrix is such that (1) rows are indexed by vertices and (2) columns are
indexed by constraints. Hence if we allow a bit of abuse of notation, we can derive 𝑆𝑙𝑎𝑐𝑘(𝑃, 𝑃′)𝑎,𝑏

Proposition 5.10

𝑆𝑙𝑎𝑐𝑘(𝑃, 𝑃′)𝑎,𝑏 = (1 − |𝑎 ∩ 𝑏|)2 (5.4.47)

Proof: The derivation above tells us that ⟨𝑎𝑎⊤, 𝐶𝑏⟩ = (1 − |𝑎 ∩ 𝑏|)2. We can use this to come up
with an alternative form of the slack matrix.

𝑆𝑙𝑎𝑐𝑘(𝑃, 𝑃′)𝑎,𝑏 = 1 − ⟨𝐶𝑏, 𝑎𝑎⊤⟩ (5.4.48)
= (1 − |𝑎 ∩ 𝑏|)2 (5.4.49)
≜ 𝑀 (5.4.50)

At the end of the day, the partial slack matrix for our 𝑃.𝑃′ has a very simple description! This
concludes the proof. ■

For the matrix𝑀, define

𝐷 = {(𝑎, 𝑏) ∶ |𝑎 ∩ 𝑏| = 0} 𝑈 = {(𝑎, 𝑏) ∶ |𝑎 ∩ 𝑏| = 1} (5.4.51)

so cells in 𝑀 belongs to one of these two disjoint sets, either 𝐷 or 𝑈. This is to say (1) 𝑀𝑎𝑏 = 0
for (𝑎, 𝑏) ∈ 𝑈, and (2)𝑀𝑎𝑏 = 1 for (𝑎, 𝑏) ∈ 𝐷.
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Figure 5.2: We can break down the matrix product 𝑈𝑉 into sum of outer products of their
columns and rows. Due to NNMF, we only look at the positive patches in the vectors and this
results in a form with addition of positive patches in the matrix.

Suppose𝑀 has a small non-negative rank factorization, i.e
𝑀 = 𝑈𝑉 𝑈 ∈ ℝ2𝑛×𝑟 ≥ 0,𝑉 ∈ ℝ𝑟×2𝑛 ≥ 0 (5.4.52)

since this is a nonnegative rank factorization, we have non negative entries in 𝑈 and 𝑉. Let
𝑈𝑖 denote the 𝑖-th column and 𝑉𝑗 denote the 𝑗-th row, then entries inside 𝑈𝑖 and 𝑉𝑗 are either
positive or zero. We break the matrix product into sum of their row / column outer products
and look at the positive entries only (see Figure 5.2).
We define a series of “rectangles”, which represents patches of positive entries illustrated in
Figure 5.2. Let

𝑅𝑖 = {(𝑎, 𝑏) ∶ 𝑈𝑖 is positive at 𝑎, 𝑉𝑖 is positive at 𝑏} (5.4.53)

Proposition 5.11: Properties of “Rectangle”

The series of rectangles 𝑅1, 𝑅2,… , 𝑅𝑟 has the following magical properties
• ⋃𝑟

𝑖=1 𝑅𝑖 must cover all points in 𝐷, and
• 𝑅𝑖 ∩𝑈 = ∅ for all 𝑖 = 1,… , 𝑟

This property is already known thanks to Razborov, where he stated

Theorem 5.5: Razborov’s Extension on Magical Rectangles

If a series of rectangles are such that
• ⋃𝑟

𝑖=1 𝑅𝑖 must cover all points in 𝐷, and
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Figure 5.3: Base Case illustration for rectangle lemma.

• 𝑅𝑖 ∩𝑈 = ∅ for all 𝑖 = 1,… , 𝑟

Then,
𝑟 ≥ 2Ω(𝑛) (5.4.54)

but we will prove it from a more principle way.

Lemma 5.2: Rectangle Lemma

If 𝑅 is a rectangle such that 𝑅 ∩𝑈 = ∅, then |𝑅 ∩ 𝐷| ≤ 2𝑛.

We will take this lemma as granted for now. (proof in Section 5.4.3)
Let’s take a look at the size of 𝐷 = {(𝑎, 𝑏) ∶ |𝑎 ∩ 𝑏| = 0}. Notice that there are three out of four
options (00, 01, 10) that satisfies this condition (∩ is just like ∧). Hence, the size of 𝐷

|𝐷| = 3𝑛 (5.4.55)

Hence, if 𝑅1,… , 𝑅𝑟 are such that (1)⋃𝑟
𝑖=1 𝑅𝑖 = 𝐷, and (2) 𝑅𝑖 ∩𝑈 = ∅,∀𝑖, then

𝑟 ≥ 3𝑛
2𝑛 ∈ 2Ω(𝑛) (5.4.56)

which means we are done!!

5.4.3 Proof of Lemma 5.2 (Rectangle Lemma)
Recall the statement: If 𝑅 is a rectangle such that 𝑅 ∩ 𝑈 = ∅, then |𝑅 ∩ 𝐷| ≤ 2𝑛. We prove this
statement with induction.
Proof: Base Case: 𝑛 = 1. If 𝑅 ∩ 𝑈 = ∅, then |𝑅 ∩ 𝐷| ≤ 2. See Figure 5.3 for illustration of base
case scenario. Clearly, to select rectangles from 𝐷, we can only have rectangles that are the first
row, the first column or just one single box.
Induction Step. Suppose the statement is true for 𝑛−1. Then, we have a 𝑛×𝑛 rectangle that can
be split into four quadrants, according to their first coordinate. See Figure 5.4 for an illustration.
The inner blue-ish part is the original rectangle. Notice that breaking a rectangle into quadrants
by fixing one coordinate results in four rectangles.
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Figure 5.4: Inductive step illustration for rectangle lemma.

Call 𝑏−1 = (𝑏2,… , 𝑏𝑛) and 𝑎−1 = (𝑎2,… , 𝑎𝑛). Then define

𝑅−1 = {(𝑎−1, 𝑏−1) ∶ ((0, 𝑎−1), (0, 𝑏−1)) ∈ 𝑅 𝑂𝑅 ((0, 𝑎−1), (1, 𝑏−1)) ∈ 𝑅} (5.4.57)

similarly for columns

𝐶−1 = {(𝑎−1, 𝑏−1) ∶ ((0, 𝑎−1), (0, 𝑏−1)) ∈ 𝑅 𝑂𝑅 ((1, 𝑎−1), (0, 𝑏−1)) ∈ 𝑅} (5.4.58)

Then, we immediately know
𝑅−1 ∩𝑈𝑛−1 = ∅ (5.4.59)

which must be true since 𝑅 ∩𝑈 = ∅. This implies, by induction, that

|𝑅−1 ∩𝐷𝑛−1| ≤ 2𝑛−1 (5.4.60)

For column, similarly,

𝐶−1 ∩𝑈𝑛−1 = ∅ (𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛)⟹ |𝐶−1 ∩𝐷𝑛−1| ≤ 2𝑛−1 (5.4.61)

Ideally, |𝑅∩𝐷| ≤ |𝑅−1 ∩𝐷𝑛−1| + |𝐶−1 ∩𝐷𝑛−1|. To show this, we need to rule out the case where
we select something in all of the quadrant except for the bottom right one. Imagine we have

⎧{{
⎨{{⎩

((0, 𝑎−1), (0, 𝑏−1)) ∈ 𝑅
((1, 𝑎−1), (0, 𝑏−1)) ∈ 𝑅
((0, 𝑎−1), (1, 𝑏−1)) ∈ 𝑅

(5.4.62)

but then this would imply ((1, 𝑎−1), (1, 𝑏−1)) ∈ 𝑅 because of exchange property, which implies
𝑅∩𝑈 ≠ ∅which results in a contradiction. So it must be the case that |𝑅 ∩𝐷| ≤ |𝑅−1 ∩𝐷𝑛−1| +
|𝐶−1 ∩𝐷𝑛−1|. This completes the proof. ■
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Proof Structure Look Back
𝑛𝑛𝑟(𝑀𝑛) ≥ (3/2)𝑛
⇊ (𝐹𝑀𝑃𝑇𝑊12)

𝑛𝑛𝑟(𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑙𝑎𝑐𝑘(𝐶𝑃𝑛)) ≥ (3/2)𝑛
⇊ (𝑌88)

𝑛𝑛𝑟(𝑆𝑙𝑎𝑐𝑘(𝐶𝑃𝑛)) ≥ (3/2)𝑛
⇊ (𝑌88)

𝑋𝐶(𝐶𝑃𝑛) ≥ (3/2)𝑛

(5.4.63)

In a chain

(3/2)𝑛 ≤ 𝑛𝑛𝑟(𝑀𝑛) (5.4.64)
= 𝑛𝑛𝑟(𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑆𝑙𝑎𝑐𝑘(𝐶𝑃𝑛)) (5.4.65)
≤ 𝑛𝑛𝑟(𝑆𝑙𝑎𝑐𝑘(𝐶𝑃𝑛)) (5.4.66)
≤ 𝑋𝐶(𝐶𝑃𝑛) (5.4.67)

where the step 𝑛𝑛𝑟(𝑆𝑙𝑎𝑐𝑘(𝐶𝑃𝑛)) involves a brilliant application of Farkas’ Theorem.
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Chapter 6

3-Progressions and The Cap-Set
Problem

6.0.1

6.1 The Cap-Set Problem
The problem goes as follows. Consider 𝐴 ⊆ 𝔽𝑛

3 . Let𝑁 = 3𝑛 and |𝐴| ≥ 𝑁/𝐶. How large can 𝐶 be
so that we always have 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 + 𝑏 = 2𝑐? Note that arithmetics are defined over
finite fields here. For example if we have 𝔽𝑛

3 = {0, 1, 2}𝑛, then
• (1, 1,… , 1) + (2, 2,… , 2) = (0,… , 0)

• 2(2, 2,… , 2) = (1, 1,… , 1)

This is called the Cap-Set problem because the condition we had in the original statement is
such that

𝑎 + 𝑏 = 2𝑐 ⟺ 𝑎 + 𝑏 + 𝑐 = 0 (6.1.1)

Figure 6.1: Tokens of the Set game (examples).
6.0.1This is not a complete chapter. Instead, we only present a few problems and theorems related.

65
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Now, this is a natural way to represent the game Set (see Figure 6.1), where tokens can be rep-
resented in finite field 𝔽4

3, which constitutes the vector representation
(𝑛𝑢𝑚𝑏𝑒𝑟, 𝑐𝑜𝑙𝑜𝑟, 𝑠ℎ𝑎𝑑𝑒, 𝑠ℎ𝑎𝑝𝑒) (6.1.2)

four items each of which has 3 possible values. The winning condition of the game is to pick
three cards such that they have no intersection in this finite field representation, i.e. find three
cards 𝑎, 𝑏, 𝑐 ∈ 𝔽4

3 such that 𝑎 + 𝑏 + 𝑐 = 0 ∈ 𝔽4
3.

Proof Idea
• Either we already have many 3-progression. Or,
• We cando some “density increment”. This is to say that∃ an affine space𝑉 of co-dimension

1 where
|𝐴 ∩ 𝑉|

𝑉 > |𝐴|
𝑁 (6.1.3)

where co-dimension is just the dimension of the complement
• the proof follows from induction.

Proposition 6.1: Stronger Roth (Integer Version)

(|𝐴| ≥ 3𝑛
𝑛 ) ⟹ ∃𝑎, 𝑏, 𝑐, ∈ 𝐴 𝑠.𝑡. 𝑎 + 𝑏 = 2𝑐 (6.1.4)

This proposition is stronger than Roth’s Theorem since it is over integers rather than finite field,
which had nicer properties.

6.2 Fourier Characters
Fourier characters 𝑐 is a set of functions

𝜒𝑎 ∶ 𝔽𝑛
3 → ℂ 𝜒𝑎(𝑥) = exp

⎧{
⎨{⎩
2𝜋𝑖
3

⎛⎜
⎝

𝑛
∑
𝑖=1

𝑎𝑖𝑥𝑖⎞⎟
⎠

⎫}
⎬}⎭

(6.2.1)

where 𝜒1(𝑥) = 1,∀𝑥.

Proposition 6.2: Fourier Characters Properties

For any function on the field that we are interested on 𝑓 ∶ 𝔽𝑛
3 → ℝ, we can write it as

𝑓 (𝑥) = ∑
𝑎

̂𝑓 (𝑎)𝜒𝑎(𝑥) wherea ̂𝑓 (𝑎) = 𝔼
𝑛∼𝑈𝑛𝑖𝑓 (𝔽𝑛

3)
[𝑓 (𝑛)𝜒𝑎(𝑛)] (6.2.2)

Orthogonality Fourier characters are orthonormal to each other, i.e.,

∀𝑎 ≠ 𝑏, ∑
𝑥∈𝔽𝑛

3

𝜒𝑎(𝑥)𝜒𝑏(𝑥) = 0 (6.2.3)
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Inner Product The inner product between two functions

𝑓 , 𝑔 ∶ 𝔽𝑛
3 → ℝ (6.2.4)

is equal to
⟨𝑓 , 𝑔⟩ = 𝔽𝑥[𝑓 (𝑥)𝑔(𝑥)] = ∑

𝑎
̂𝑓 (𝑎) ̂𝑔(𝑎) = 1

3𝑛 ∑
𝑥

𝑓 (𝑥)𝑔(𝑥) (6.2.5)

Convolution The convolution between two functions 𝑓 , 𝑔 ∶ 𝔽𝑛
3 checks how correlated two

functions are after a shift. Mathematically,

(𝑓 ⋆ 𝑔)(𝑥) = 𝔼𝑦[𝑓 (𝑦)𝑔(𝑥 − 𝑦)] (6.2.6)

Now, we say 𝑓 , 𝑔 and their coefficients are in the physical space, while (𝑓 ⋆ 𝑔) and its coef-
ficients are in the phase space or frequency space.

a ̂𝑓 (𝑎) is the Fourier coefficient

Proposition 6.3: More Properties of Fourier Characters

For any function on the field that we are interested on 𝑓 ∶ 𝔽𝑛
3 → ℝ, we can write it as

𝑓 (𝑥) = ∑
𝑎

̂𝑓 (𝑎)𝜒𝑎(𝑥) wherea ̂𝑓 (𝑎) = 𝔼
𝑛∼𝑈𝑛𝑖𝑓 (𝔽𝑛

3)
[𝑓 (𝑛)𝜒𝑎(𝑛)] (6.2.7)

Then
• 𝔼𝑥[𝑓 (𝑥)] = ̂𝑓 (0), and
• 𝔼𝑥[𝑓 (𝑥)2] = ∑𝑎 | ̂𝑓 (𝑎)|2

a ̂𝑓 (𝑎) is the Fourier coefficient

6.3 Proof of Proposition 6.1 (Strong Roth)
Proof: The original inquiry was on for 𝐴 ⊆ 𝔽𝑛

3 , if there exists some 𝑎, 𝑏, 𝑐 such that 𝑎 + 𝑏 = 2𝑐.
Let’s shift the goal a bit an instead count the number of 𝑎, 𝑏, 𝑐 that satisfies the condition, i.e. the
quantity

# = |{𝑎, 𝑏, 𝑐 ∈ 𝐴 ∶ 𝑎 + 𝑏 = 2𝑐}| ≡ |{𝑎, 𝑏, 𝑐 ∈ 𝐴 ∶ 𝑎 + 𝑏 + 𝑐 = 0}| (6.3.1)

Obviously, if we have # > |𝐴|, then there should be three distinct elements 𝑎, 𝑏, 𝑐 ∈ 𝐴 such that
𝑎+𝑏 = 2𝑐. But how do we count the number of arithmetic progression? To do so, we define the
indicator function

𝟙𝐴 ∶ 𝔽𝑛
3 → {0, 1} 𝟙𝐴(𝑥) =

⎧{
⎨{⎩
1 if 𝑥 ∈ 𝐴
0 otherwise (6.3.2)
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Then,

# = |{𝑎, 𝑏, 𝑐 ∈ 𝐴 ∶ 𝑎 + 𝑏 + 𝑐 = 0}| (6.3.3)
= ∑

(𝑎,𝑏,𝑐)∶ 𝑎+𝑏+𝑐=0
𝟙𝐴(𝑎) ⋅ 𝟙𝐴(𝑏) ⋅ 𝟙𝐴(𝑏) (6.3.4)

= 32𝑛 ⋅ 𝔼
𝑎,𝑏,𝑐∈𝔽𝑛

3 ∶ 𝑎+𝑏+𝑐=0
[𝟙𝐴(𝑎) ⋅ 𝟙𝐴(𝑏) ⋅ 𝟙𝐴(𝑏)] (6.3.5)

= (†) (6.3.6)

Recall the definition of convolution between two functions, where we can write it in an alter-
native way

(𝑓 ⋆ 𝑔)(𝑥) = 𝔼𝑦[𝑓 (𝑦) ⋅ 𝑔(𝑥 − 𝑦)] (6.3.7)
= 𝔼(𝑎,𝑏)∶𝑎+𝑏=𝑥[𝑓 (𝑎) ⋅ 𝑔(𝑏)] (6.3.8)

With convolution, we can transform (†) into

(†) = 32𝑛𝟙𝐴 ⋆ 𝟙𝐴 ⋆ 𝟙𝐴(0) (6.3.9)

Claim: (we won’t show the first step).

|{𝑎, 𝑏, 𝑐 ∈ 𝐴 ∶ 𝑎 + 𝑏 + 𝑐 = 0}| = 32𝑛 ⋅∑
𝑎

̂1𝐴(𝑎)3 (6.3.10)

= 32𝑛 ⋅ ( ̂1(0)) + 32𝑛 ∑
𝑎≠0

( ̂1𝐴(𝑎))3 (6.3.11)

which according to our parametrization is

̂1𝐴(0) = 𝔼𝑥[1𝐴(𝑥)] = |𝐴|
𝑁 ≜ 𝛿 (6.3.12)

Then,

̂1𝐴(0) = 32𝑛𝛿3 + 32𝑛 ⋅ ∑
𝑎≠0

1𝐴(𝑎) (6.3.13)

Hence so far we know

3# − 𝑒2𝑛 ⋅ 𝛿3 = 32𝑛 ⋅ ∑
𝑎≠0

̂1𝐴(𝑎)3 (6.3.14)

≤ 32𝑛 ⋅ ∑
𝑎≠0

| ̂1𝐴(𝑎)|3 (6.3.15)

= 32𝑛 ⋅ ⎛⎜⎜
⎝
∑
𝑎≠0

| ̂1𝐴(𝑎)|2⎞⎟⎟
⎠

⋅ (max
𝑏≠0

1𝐴(𝑏)) (6.3.16)
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Now,

𝛿 = 𝔼𝑥[1𝐴(𝑥)] (6.3.17)
= 𝔼𝑥[1𝐴(𝑥)2] (6.3.18)
= ∑

𝑎
| ̂1(𝑎)|2 (6.3.19)

= ̂1𝐴(0)2 + ∑
𝑎≠0

| ̂1𝐴(𝑎)|2 (6.3.20)

where we can put this back in

|3 ⋅ # − 32𝑛 ⋅ 𝛿3| ≤ 32𝑛 ⋅ (max
𝑏≠0

| ̂1𝐴(𝑏)|) ⋅ (𝛿 − 𝛿2) (6.3.21)

⟹ max
𝑏≠0

| ̂1𝐴(𝑏)| ≥ |3 ⋅ # − 32𝑛 ⋅ 𝛿3|
𝛿 − 𝛿2

(6.3.22)

We proceed with the proof with induction. If 3# > 3𝑛 ⋅ 𝛿, then we are good. Otherwise, we
know we know the inequality that we derived above

max
𝑏≠0

| ̂1𝐴(𝑏)| ≥ |3 ⋅ # − 32𝑛 ⋅ 𝛿3|
𝛿 − 𝛿2

(6.3.23)

= |32𝑛 ⋅ 𝛿3 − 3 ⋅ #|
𝛿 − 𝛿2

(6.3.24)

≥ 32𝑛 ⋅ 𝛿3 − 3𝑛 ⋅ 𝛿
32𝑛 ⋅ (𝛿 − 𝛿2)

(6.3.25)

≈ 𝛿2
2 (6.3.26)

This implies on one of the following three spaces, we have |𝐴∩𝑈|
|𝑉| ≥ 𝛿 +Ω(𝛿2).

The three affine spaces are the following

{𝑥 ∶ ⟨𝑏⋆, 𝑥⟩ = 0}
{𝑥 ∶ ⟨𝑏⋆, 𝑥⟩ = 1}
{𝑥 ∶ ⟨𝑏⋆, 𝑥⟩ = 2}

(6.3.27)

which concludes the proof. ■
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