
final_review.markdown 12/8/2019

1 / 23

MIPS
Mircroprocessor w/o Interlocked Pipelin Stages

A type of RISC (Reduced Instruction Set Computer) as opposite to the CISC such as the X86 micro-
archaetecture.
RISC philosophy: Simple yet fast instructions, complecated stuff should be done by the assembler.
CISC philosophy: Complex instrutions that can do complex things.

Mips Instructions
Instructions are written in the format <instr> <parameter>
Each instruction takes its own line
All instructions are 32 bits long. (that is, 4 bytes)
Instruction address are measured in bytes, start point is address 0

Thus, all instruction addresses are divisible by 4!

Assembly Language Instructions

Converting from Assemby to Machine Code
Consider the operation $t3 = $t1 + $t2, which has assembly equivalent add $t3, $t1, $t2. Then, we can
convert this into the equivalent machine code.

 | Opcode | Operand |Function|
 | 000000 | 01001 01010 01011 XXXXX | 100000 |

Notice that here the opcode is 6'b0, since this operation is a R-type operation. The XXXXX in the syntax part is
marks don't care values for the <shamt>

R-type VS i-type arithmetic
In general, some intructions are R-type (meaning all operands are registers) and some are I-type (meaning they use
an immediate/constant value in their operation). Here are some examples for each flavour

R-Type: add, addu, div, divu, mult, multu, sub, subu...
I-Type: addi, addiu...

Converting From Assembly to Machine Code, Take II
We should do an example where we use a I-type instruction. Consider $t2 = $t1 + 42, which shall translate into
addi $t2, $t1, 42. Notice that here the actual operation that was carried out is $t = $s + SignExtend(i
= 42). The equivalent machine code is

final_review.markdown 12/8/2019

2 / 23

 | Opcode | Operand | Immediate |
 | 001000 | 01001 01010 | 0000000000101010 |

Shift Instructions
Here is a list of common shift instructions

Insturction Opcode/Function Syntax Operation

sll 000000 $d, $t, $s $d = $t << a

sllv 000100 $d, $t, $s $d = $t << $s

sra 000011 $d, $t, a $d = $t >> a

srav 000111 $d, $t, $s $d = $t >> $s

srl 000010 $d, $t, a $d = $s >>> a

srlv 000110 $d, $t, $s $d = $t >>> $s

Note:

srl = "shift right logical"
sra = "shift right arithmetic"
v denotes a variable number of bits, specified by $s
a is the shift amount, and is stored in the shamt when encoding the R-type machine code instructions

Data Movement Instructions

Insturction Opecode/Functions Syntax Operation

mfhi 010000 $d $d = hi

mflo 010010 $d $d = lo

mthi 010001 $s hi = $s

mtlo 010011 $s lo = $s

These are R-type instructions for operating on the HI and LO registers described earlier.

ALU instructions
For the ALU instructions, most are R-type instructions. Thus, they mostly have the 6'b0 opcodes. However, not all
R-type instructions have I-type equivalent. This is due to the philosophy of the RISC archaetecture, which states
that an operation doesn't need an instruction it it can be performed through multiple existing operations.

final_review.markdown 12/8/2019

3 / 23

Converting Programs and Assembly - Fibonacci Sequence Example

int fib(void) {
 int n = 10;
 int f1 = 1, f2 = -1;

 while (n != 0) {
 f1 = f1 + f2;
 f2 = f1 - f2;
 n = n - 1;
 }
 return f1;
}

In assembly code

fib.asm
register usage: $t3 = n, $t4 = f1, $t5 = f2

FIB: addi $t3, $zero, 10 # Init to n = 10
 addi $t4, $zero, 1 # Init to f1 = 1
 addi $t5, $zero, -1 # Init to f2 = -1
LOOP: beq $t3, $zero, END # Until n = 0, then jump to END
 add $t4, $t4, $t5 # f1 = f1 + f2
 sub $t5, $t4, $t5 # f2 = f1 - f2
 addi $t3, $t3, -1 # n = n - 1
 j LOOP # REPEAT
END: sb $t4, 0($sp) # store the result

Control Flow in Assembly
Not all programs follow a linear set of intructions.

Some operations require the code to brach to one section of code or another, e.g. IF/ELSE calls
Some require the code to jump back and repeat a section of code again (FOR/WHILE)

For this, we have labels on the left hand side that indicate the points that the program flow might need to
jump to.

Reference to these points the assembly code are resolved at compile time to offset values for the
program counter.

Jump Instructions

Instruction Opcode/Function Syntax Operation

final_review.markdown 12/8/2019

4 / 23

Instruction Opcode/Function Syntax Operation

j 000010 label pc = (pc & 0xF00000000) | (i << 2)

jal 000011 label
$31 = pc + 4; pc = (pc & 0xF00000000) | (i <<
2)

jalr 001001 $s $31 = pc + 4; pc = $s

jr 001000 $s pc = $s

jal = "jump and link"
Register $31 (aka $ra) stores the address that is used when returning from a subroutine

Note: jr and jalr are jumps, but not J-type instructions.

More on jr and jalr (Jump to Registers)

For instructions such as jr $ra and jalr $t0.
The processor moves the address stored in $ra and $t0 into the program counter.

The next instruction to be fetched will be at this new address, and the program will continue from there.

More on j and jal (Jump to Label)

For j and jal instructions, the address is supplied by the instruction, and this can potentially cause a
problem.

Problem:

| 6'b opcode | 26'b address |

If we have 32'b instructions and the first 6'b are occupied by the opcode, the remaining bits aren't enough for
a entire address!
Work Around:

Trailing Zeros: Since jump instructions load new addresses into the program counter, the values being
loaded must be diisibe by 4.

Therefore, the binary values of these addresses will always end in "00".
Therefore, we are 100% sure that the last two bits are zero!
This, combined with the 26'b provided as input gives in total 28'b which is still not enough.

First Four bits: Several solutions exsits, we will dicuss the solution that MIPS adapts.
We simply keep the first four bits of the previous PC value, and this gave rise to the update rule
we saw earlier.

pc = (pc & 0xF00000000) | (i << 2)

final_review.markdown 12/8/2019

5 / 23

Notice that the bitwise and part preserves first four bits of the previous program counter.
The last part adds to zeros
Bitwise OR them together produces the desired result.

Branch Instructions
Branching statements are used widely in IF statements and WHILE loops, or generally anything that requires the
assembly code to jump around. Note: the labels are memory locations, assigned to each label at compile time.

Instruction Opcode/Function Syntax Operation

beq 000100 $s, $t, label if ($s == $t) pc += i<< 2

bgtz 000111 $s, label if ($s > 0) pc += i << 2

blez 000110 $s, label if ($s <= 0) pc += i << 2

bne 000101 $s, $t, label if ($s != $t) oc += i << 2

Branch's Immediate (i) Value

Branch statements are I-type instructions
The immediate value (i) is a 16bit offset to add to the current instruction if the brach condition is satisfied (not
the absolute address like with jumps)

Calculated as the difference between the current PC value and the address of the instruction youa re
branchng to.
Stored here as number of instructions and not number of bytes

Again, not storing the trailing '00' if it is not necessary.
The i value can be positive (if you are jumping i instructions forward) or negative (if you are jumping i
instructions backward)

Calculating the i value

The offset is computed differently, depending on the implementation (i.e. if the PC is incremented by 4 before
or after the brach offset calculation).
In this course, we assume that i is computed as

i = (label - (current PC)) >> 2, i.e. PC is incremented first.
Let's see an example where the i is calculated at compile time

.text
main: addi $t0, $zero, 1
 beq $t0, $zero, END
 addi $t1, $zero, 1
END: addi $t3, $zero, 1

final_review.markdown 12/8/2019

6 / 23

We can see, using a simulator, that the immediate value for the beq call, which is END, is 2. (Since END is 2
instructions down from the branch instruction)

Conditional Branch Terms

When the branch condition is met, we say the branch is taken
When the branch condition is not met, we say that the branch is not taken.

in the case that the brach is not taken, the next value for the PC is PC = PC + 4, which is exacly the
next instruction since each instruction is 4 bytes long (32'b).

Since branching relies on a 16bit value, branching distance is not unlimited. Since the 16'b is signed,
we have +/- 15'b to vary in total, which gives 2^16 total different values, corresponding to a range of 2^16
instructions.

Comparison Instructions

Instruction Opcode Syntax Operation

slt 101010 $d, $s, $t $d = ($s < $t)

sltu 101001 $d, $s, $t $d = ($s < $t)

slti 001010 $t, $s, i $t = ($s < SE(i))

sltiu 001011 $t, $s, i $t = ($s < ZE(i))

Note: Comparison operations stores a 1 in the destination register if the less-than comparison is true, and
stores a zero in that location otherwise. This is not used very often, but useful in combination with branch
instructions that only depend on one register. For example, bgtz branching on greater than. (You can do the
comparison and store the result and use bgtz to branch on the computed 1/0 value.)

Using Branches and Jumps
If Statements

If statements test a condition and then execute lines of code if the condition is true. For instance

if (i == j) {
 i++;
}
j += i;

Testing conditions is done using either a beq instruction or a bne instruction.
To achieve this, we can use the bne instruction to skip the i++ steo and proceed to the j += i step.

final_review.markdown 12/8/2019

7 / 23

st1 = i, $t2 = j
main: bne $t1, $t2, END
 addi $t1, $t1, 1
END: add $t2, $t2, $t1

If/Else Statements

Possible approach to if/else statements:
Test condition, and jump to if logic block whenever the condition is true.
Otherwise, perform the else logic block, and jump to the first line after if logic block.

Example

if (i == j)
 i++;
else
 i--;
j += i;

Can be translated into the following

$t1 = i, $t2 = j
IFPART: bne $t1, $t2, ELSEPART
 addi $t1, $t1, 1
 j END
ELSEPART: addi $t1, $t1, -1
END: add $t2, $t2, $t1

Multiple If Statements

There are cases where the condition for the if statement has several conditions, such as the follows

if (i == j || i == k)
 i ++;
else
 i --;
j = i + k;

we have the equivalent form in assembly

final_review.markdown 12/8/2019

8 / 23

$t1 = i, $t2 = j, $t3 = k
main: beq $t1, $t2, IF # equal -> short circuit behavior
 bne $t1, $t3, ELSE # if equal, do nothing and jump to else
IF: addi $t1, $t1, 1
 j END # skip the else part
ELSE: addi $t1, $t1, -1
END: add $t2, $t1, $t3

Above we looked at the case where if was done on two conditions or'ed together. We shall now see an example
where it has a and condition.

if (i == j && i == k)
 i ++;
else
 j --;
j = i + k;

in assembly, this can be represented as

$t1 = i, $t2 = j, $t3 = k
MAIN: bne $t1, $t2, ELSE
 bne $t1, $t3, ELSE
 addi $t1, $t1, 1
 j END
ELSE: addi $t1, $t1, -1
END: add $t2, $t1, $t3

While Loops

Loops are, in some sense, similar to if statements. Here is the general recepe for the assembly procedure.

Test if the loop condition fails
If it does, branch to the end

Otherwise, execute the while loop contents
Make sure to update the loop condition values

Jump back to the beginning Consider he following simple program

int i = 0;
while (i < 100) {
 i++;
}

final_review.markdown 12/8/2019

9 / 23

we have assembly code equivalent

$t0 = i, $t1 = 100 (constant variable to compare to)
main: add $t0, $zero, $zero # set $t0 to 0
 addi $t1. $zero, 100 # set $t1 to 100
START: beq $t0, $t1, END # while $t0 < $t1
 addi $t0, $t0, 1 # $t0 = $t0 + 1
 j START # jump back to the start
END: # do nothing after finishing

For Loops

for (<init> ; <cond> ; <update>) {
 <for body content>
}

Cosinder the problem

for (i = 0 ; i < 100 ; i++) {
 j = j + i;
}

which translates into assembly as

$t0 = i, $t1 = j, $t9 = 100 (constant var)
main: add $t0, $zero, $zero # Init $t0 <- 0
 add $t1, $zero, $zero # Init $t1 <- 0
 addi $t9, $zero, 100 # Init $t9 <- 100
START: beq $t0, $t9, EXIT
 add $t1, $t1, $t0
UPDATE: addi $t0, $t0, 1
 j START
EXIT:

Note: Without the initialization and update sections, this is the same as a while loop.

Interactng With Memory
All of the previous instructions perform operations on registers and immediate values, what about momory?

final_review.markdown 12/8/2019

10 / 23

All program must fetch values from memory into registers, operate on them, and then store the values back
into memory.
Memory operations are I-type, with the form

|Load/Store Operation|Load Data Register|offset(Address in Memory)|
| lw | $t0 | 12 ($t0) |

Load Versus Stores
The terms "laod" and "store" are seen from the perspective of the processor, looking at memory
Load are read operations

We load (i.e., read) from memory
We load a value from a memory address into a register

Stores are write operations
We store (i.e. write) a data value from a register to a memory address.
Store instructions do not have a destination register, and therefore do not write to the register file.

Memory Instructions in MIPS Assembly
Load and store instructions are I-type operations

| 6'b Opcode | 5'b rs | 5'b rt | 16'b immediate |

Here is a nice way to organize all the possible assembly commands in this category, represented in regular
expression

(load + store) (size of value) (signed or unsigned)
(l + s) (w + h + b) (u / <>)

w = word
h = half
b = byte not bit!

Load and store instructions (omitted since not necessary to reproduce here)
Above we have discussed a way to organize all possible commands, we will represent them using <1><2>
<3> to further discuss the trailling arguments

| Command Name | Destination, offset (access location) |
| <1><2><3> | $t , i($s) |

final_review.markdown 12/8/2019

11 / 23

The access location specifies the location to access as MEM[$s + SE(i)] while Destination
stores the destination register for loads, source register for store. (These are register locations in the register
file, so from the processos' perspective of view we load from memory into a destination register OR we write
to memory using a source register as source)

Alignment Requirements
Misaligned memory accesses result in errors

Word access should word aligned (divisible by four). This is used in addresses specified in a lw or sw
instruction.
Half word access should only involve half-word aligned address (i.e., even addresses)
No constraints for byte access.

Notes on Memory

Big/Small Endian-ness

Big Endian
The most significant byte of the word is stored first. The second most significant byte is stored at
address that immediately follows and so on and so forth.

Small Endian
The least significant byte of the word is stored first. The second least significant byte is stored at
address that immediately follows and so on ans so dorth.

MIPS Endianness

MIPS processors are bi-endian i.e., they can operate with either big/small endian byte order.

Reading From Devices
The offset value is useful for objects or stack parameters, when multiple values are needed from a given
memory location.
Memory is also used to communicate with outside deices, such as keyboards and monitors

known as memory mapped IO
Invoked with a trap or syscall function

Trap Instructions

Trap instructions send system calls to the operating system
For example, interacting with the user, and exiting the program etc.

This is similar, but not quite the same, as compared to the syscall command.

Memory Segments and Syntax
Program are divided into two main sections in memory:

.data

http://courses.missouristate.edu/kenvollmar/mars/help/syscallhelp.html

final_review.markdown 12/8/2019

12 / 23

Indicates the start of the data values section. (Typically, the beginning of the program)
.text

Indicates the start of the program instruction section.
Withhin the instruction section are program labels and branch addresses.

main:
The initial line to run when executing the program

Other labels are determined by the function names used in one's program.

Labeling data values

Data storage
At beginning of program, create labels for memory locations that are used to store values.
Always in form label .type value(s)
Create a single integer variable with initial value 3

var1: .word 3

Create a 2-element character array with elements initialized to a and b

array1: .byte 'a', 'b'

Allocate 40 consecutive bytes, with uninitialized storage. Could be used as a 40 element character
array, or a 10 element integer array

array2: .space 40

Pseudo-Instructions
Pseudo-instructions are there for the convenience of the programmer.
The assembler translates them into 1 ot more real MIPS assembly instructions

Real MIPS instructions have opcodes, pesudo-instructions do not!
The assembler often uses the special $at register (also written as $t) when mapping pseudo-
instructions to MIPS instructions.

Example: The la instruction
la (load address) is a pseudo-instruction written in the format

la $d, label
Loads a register $d with memory address that label corresponds to.

final_review.markdown 12/8/2019

13 / 23

Usually translated by the assembler into the following two MIPS instructions
1. lui $at, immediate, load upper immediate

The immediate represents the upper 16 bits of the memory address label corresponds to. These
bits are loaded in the upper 16 bits of the destination register. Lowest 16 bits are set to 0.
Register $at($1) is the register used by the assembler

2. ori $d, $at, immediate2
immediate2 represents the lower 16 bits of the memory address label corresponds to. (Here
ori is the OR immediate operation.)

Example: bge branching
Some branch instructions are pseudo instructions, for example

bge $s, $t, label
Branch to label if and only if $s >= $t

(Comparing regiser contents)
Implemented by using one of comparison instructions followed by beq or bne. One plausible
implementation is

slt $at, $s, $t # set $at to 1 if $s<$t
beq $at, $zero, $label # branch if $at == 0

Notice that here we have usde the $at register. This is legal because we are now doing the role of
assembler and $at is reserved for the assembler.

Arrays and Structs

Arrays
Arrays in assembly languarge:

Arrays are stored in consecutive locations in memory.
The address of the array is the address of the array's first element
To access element i of an aray, use i to calculate an offset distance. Add that offset to the
address of the first element to get the address of the i-th element.

offset = i * sizeof(single element)
To operate on array elements, load the array values into registers. Operate on them, then store them
back into memory.

Translating Arrays
Consider the code snippet

final_review.markdown 12/8/2019

14 / 23

int A[100], B[100]; # B is an array of 100 slots, each of value 42
for (i = 0; i < 100; i++) {
 A[i] = B[i] + 1
}

Then, in assembly

 .data
A: .space 400
B: .word 42:100

 .text
main: la $t9, A # Load From Memory
 la $t9, B # Load From Memory
 add $t0, $zero, $zero # $t0 <- i, Init to 0
 addi $t1, $zero, 100 # $t1 <- 100, stop condition

LOOP: bge $t0, $t1, END
 sll $t2, $t0, 2 # sizeof(int) = 4 byte, $t2 = offset
 add $t3, $t8, $t2 # $t3 = (*)A + offset
 add $t4, $t9, $t2 # $t4 = (*)B + offset
 # Note: In memory, above two are different
addresses
 lw $t5, 0($t4) # $t4 = addr(B[i]), $t5 = B[i]
 addi $t5, $t5, 1 # Increment by one on loaded value
 sw $t5, 0($t3) # Store the value into appropraiate A
position

UPDATE: addi $t0, $t0, 1 # i++
 j LOOP # Jump Back

END: ...

In above implementation, we used a seperate loop variable to count the number of loops. It is also possible to do
this with just the offset value where we constantly compare to 400, the final offset in the last iteration corresponding
to the last element in both arrays.

Example: Struct Program

 .data
a1: .space 12

 .text
main: addi $t0, $zero, a1 # store array head a1 in $t0

final_review.markdown 12/8/2019

15 / 23

 addi $t1, $zero, 5 # initialize $t1 to 5, prep
 sw $t1, 0($t0) # write to position 0($t0), value of $t1
 addi $t1, $zero, 13 # ... (repeat above)
 sw $t1, 4($t0) # second slot, off-set 4 bytes (32 bits)
 addi $t1, $zero, -7
 sw $t1, 8($t0) # ... (repeat above)

How can we figure out the purpose of this code?
The sw lines indicate that values in $t1 are being stored at $t0, $t0 + 4, and $t0 + 8.

Each previous line sets the value of $t1 to store
Therefore, this code stores the value 5, 13, and -7 into the struct at location a1.

Designing Assembly Code

Making sense of assembly code
Assembly language looks intimidating because the programs involve a lot of code.

No worse than your CSC108 assignments would look to the untrained eye!
The key to reading and designing assembly code is recognizing portions of code that represent higher-level
operations that you're familiar with.

Functions in Assembly - Introducing Stacks

Function Calls and Returns
To suppirt functions, we need to be able to:

Define the start of a function
Label the first line to provide a target address to jump to.

Take in function arguments and return values
Could use registers but might need another solution

Store variables local to the fnction and also ensure functions don't clobber useful data on registers
Registers for storing data, but are any off-limit?

Return to the calling site
after the last line in the function, return to the instruction after the one that dod the function call.

How do we call a function?

jal FUNCTION_LABEL
This jumps to the first line of the function, which has the specified label (i.e. function_X here)

jal is a J-type instruction
It updates register $31 ($ra, return address register) and also the program counter
After it's executed, $ra contains the address of the instruction after the line that called jal.

final_review.markdown 12/8/2019

16 / 23

How do we return from a function?

jr $ra
The PC is stet to the address in $ra

But how do we knwo what is in $ra ?
$ra was set by the most recent jal instruction (function call)!

Problem: nested function calls are not able to run using this simple scheme!

Solving the $ra dilemma

How do we make sure tat we don't clobber the value of $ra every time we call a nested function?
Need to put $ra away somewhere for safe keeping if we know we are about to overwrite it.
Would be ideal if the sturcture used for this mode it it easy to find the last item that was stored away.
STACK!!!

The Stack
The Stack and the Stack Pointer

The statck is a spot in memory used to store values independent of the registers (which can get overwritten
easily)
A special register stores the stack pointer, which points to the last element pushed onto the top of the stack.

For MIPS the stack pointer is $sp($29). This holds the address of the last element pushed to the top
of the stack
In other systems, $sp could point to the first empty location on top of the stack.

We can push data, like $ra, onto the stack (which makes it grow) and pop data from the stack (which makes
it shrink).
The stack is allocated a maximum space in memory. If it grows too large, there is the risk of it exceeding this
predefined size and/or overlapping with heap (Whoops, bad memory from 209 : / Stack frames are allocated
with 6MB each, and huge recursions can potetially overflow in this.)

The programmer's view of memory

The stack is a part of memory used for function calls etc.
The stack grows towards samller (lower) addresses
The stack uses LIFO (last in first out order)

0x00000000 | Reserved |
... | |

 | Code(.text)|
... | |

 | (.data) | <- Global Variables
... | |

final_review.markdown 12/8/2019

17 / 23

 | Heap | (Heap grows downward)
... | |

... | |
 | Unallocated |
... | |

 | (top)| (<- $sp points to current top)
 | Stack | (Stack grows upward, to small address)
0x7FFFFFFF | (bot)|

0xFFFFFFFF | OS Code |

The stack to the rescue!

When do you store values onto the stack?
Whenever you call a function and want to preserve values from getting overwritten (like $ra)

What happens when you have nested function calls, each of which stores $ra on the stack?
Different $ra value will exists in layers on the stack over time.

We can also use the stack to store
Function Arguments
Function return values

Popping Values off the stack

pop a word off the stack
lw $ra, 0($sp)
move stack pointer a word (4 bytes)
addi $sp, $sp, 4

Note: addi $sp, $sp, 4 is adding 4 to the stack pointer, hence moving downward by a word length

Pushing Values to the stack

move stack pointer a word (new location at top)
addi $sp, $sp, -4
push a word onto the stack
sw $ra, 0($sp)

Advice on using the stack

final_review.markdown 12/8/2019

18 / 23

Any space you allocate on the stack, you should later deallocate. (Similar to in C, malloc() on heap and de-
allocate using free())
If you push items in a certain order, you should pop the items in the reverse order.

might help to draw out an image of how the stack looks like
When pushing more than one item onto the stack, you can:

Either allocate all the spaces in the beginning or allocate spaces as you go. Same principle applies for
popping

Passing Function Parameters

Functions versus Code
Since functions have entry and exit points, they also need input and output parameters.

In other languages, these parameters are assumed to be available at the start of the function.
In Assembly, you have to fetch those values from memory first before you can operate on them.

Common Calling Conventions
While most programs pass parameters through the stack, it is also possible to use registers to pass values to
and from programs:

Registers 2 - 3 ($v0, $v1): return values
Registers 4 - 7 ($a0 - $a3): function arguments

If your function has up to 4 arguments you would use the $a0 to $a3 registers in that order. Any additional
arguments would be pushed on the stack.

More common convention is to just push all arguments to the stack. (Specific way of doing this will be
provided on he final exam.)

Example: String function strcpy program

void strcpy (char* x, char* y) {
 int i = 0;
 while ((x[i] = y[i]) != '\0')
 i += 1;
 return 1;
}

We will convert the above program into assembly, using parameters from the stack. In this case, the parameters x
and y are passed into the function, in that order.

!#! Each char is 1 byte

strcpy: lw $a0, 0($sp) # load *y* into $a0

final_review.markdown 12/8/2019

19 / 23

 addi $sp, $sp, 4 # move to next word
 lw $a1, 0($sp) # load *x* into $a1
 addi $sp, $sp, 4 # move new stack top
 add $t0, $zero, $zero # $t0 = i, init to 0

L1: add $t1, $t0, $a0 # $t1 = y + i = ystart + offset
 lb $t2, 0($t1) # $t2 = current y[i]
 add $t3, $t0, $a1 # #t3 = x + i = xstart + offset
 sb $t2, 0($t3) # x[i] = $t2 (x[i] = y[i])
 beq $t2, $zero, L2 # y[i] ?= '\0'
 addi $t0, $t0, 1 # i++
 j L1 # loop again

L2: addi $sp, $sp, -4 # Move $sp to 1 above top
 addi $t0, $zero, 1 # $t0 = 1
 sw $t0, 0($sp) # Write $t0 to stack top
 jr $ra # return

Function Considerations

Maintaining Register Values
We have already demonstrated why we'd need to push $ra onto the stack when having nested function
calls.
What about other registers?

How do we know that a fnction we called didn't overwrite registers that we were using?
Remember there is one and only one register file!

Solution: caller and callee calling conventions

Calling Conventions
Caller vs. Callee

Caller is the function calling another function.
Callee is the function being called.
A function canbe both a caller and a callee

We seperate registers into
Caller-Saved Registers ($t0 - $t9)
Callee-Saved Registers ($s0 - $s7)

Register Saving Conventions
Caller-Saved Registers

Regisers 8-15,24,25 ($t0 - $t9): temporaries
Registers that the caller should save to the stack before calling a function. If they don't save them, there
is no gurantee that the contents of these registers will bot be clobbered.

final_review.markdown 12/8/2019

20 / 23

Push them to the stack just before you call another function and restore them immediately after.
Calle-Saved Registers

Registers 16-23 ($s0 - $s7): saved temporaries
It is the responsiblility of te callee to save these registers and later restore them, if it is going to modify
them.
Push them to the stack first thing in your function body and restore them just before you return.
(preserving the values in the registers using the stack)

Stack & Function Summary
Before Calling a subroutine

Push registers onto the stack to preserve their values
Push the input paraeters onto the stack

At the start of the subroutine
Pop the input parameters from the stack

At the end of subroutine
Push the return values onto the stack

Coming back from a subroutine call:
Pop the return values from the stack
Pop the saved register values and restore them

Recursion in Assembly

Recursive Programs

int fact (int x) {
 if (x == 0)
 return 1;
 else
 return x * fact(x - 1)
}

Still needs base case and recursive step, as with other languages.
Main difference (w.r.t. other language): Maintainning register values

When a recursive function calls itself in assembly, it calls jal back to the beginning of the program
What happens to the prevous value $ra?
What happens to the previous register values, when the program runs a second time?

Solution: the stack!
Before recursive call, store the register values that you use onto the stack, and restore them when you
come back to that point.
Don't forget to store $ra as one of those values, or else the program will loop forever.

final_review.markdown 12/8/2019

21 / 23

Translated fact(int x) in Assembly

main: addi $t0, $zero, 10 # Assume call on fact(10)
 addi $sp, $sp, -4 # Push 10 onto stack
 sw $t0, 0($sp) # puch 10 onto stack
 jal factorial # result will be on stack
 ...

factorial: lw $t0, 0($sp) # get x from stack
 bne $t0, $zero, rec # base case ?

base: addi $t1, $zero, 1 # Base case reached, make 1
 sw $t1, 0($sp) # put 1
 jr $ra # return to caller

rec: addi $t1, $t0, -1 # $t1 <- x - 1
 addi $sp, $sp, -4 # put return value
 sw $ra, 0($sp) # onto the stack
 addi $sp, $sp, -4 # put x - 1 onto
 sw $t1, 0($sp) # stack
 jal factorial # RECURSIVE CALL
 lw $t2, 0($sp) # pop return value
 addi $sp, $sp, 4 # from stack
 lw $ra, 0($sp) # restore return
 addi $sp, $sp, 4 # address value
 lw $t0, 0($sp) # restore x value
 addi $sp, $sp, 4 # for this call
 mult $t0, $t2 # x * fact (x - 1)
 mflo $v0 # fetch product
 addi $sp, $sp, -4 # push n! result
 sw $v0, 0($sp) # onto stack
 jr $ra # return to caller

Final Checklist

RegDst Rule
High for 3-register operations
Low for 2-register operations

2013 December Questions

final_review.markdown 12/8/2019

22 / 23

T/F When assigning flip-flop values to states, it is better to use more flip flop in your design if it avoids multiple
flip flops change at the same time.
ALU selection bits S2 is the special one. S2 = 0 then use arithmetic, and if = 1 then use logic. When logic, 00
= AND , 01 = OR, 10 = XOR, 11 = NOT A.
What kind of interrupt handling does the MIPS architecture use? ISR: Interupt Service Routine
Which of the following devices require the most gates to implement?

RS Flip-Flop
Full adder
1 - bit comparator
D-Flip Flop
Multiplexer
T Flip Flop

In reading from memory, t_{AA} is the Address Access Time: Time needed for address to be stable before
reading data values. t_{OHA} is the Output Hold Time: time outpt data is held after change of address.
R type Instru |6'b0|5'b RS|5'b RT|5'b RD|5'b shamt|6'b Func|
I type Instru |6'b Func|5'b RS|5'b RT|16'b Imm|
J type Instru |6'b Func|26'b Address|

2014 April Questions
How many bytes can be storede in a memory unit that uses 8 address bits and a 16-bit architecture? I think
this should be 2^8 * 2 = 512, but this is not present as one of the possible answers
Which of the following assembly instructions use the processor's shift left units? jal, bne, lb, and sub. IDK this
one
Which of the following assembly instructions use the processor's sign extend unit? addi, srl, addu, beq, lw,
sw. NOT SURE ABOUT THIS ONE.
Which ALU outout signal triggers an exception condition? Let's state the four indicators here

V: overflow condition
C: Carry bit
N: negative indicator
Z: zero condition indicator

2014 December Questions
How many bytes can be stored in a memory unit that uses 8 address bits and a 32 bit architecture? Should
the answer be 1024? since 2^8 * 4 = 1024. Not sure about this one
How many address bits are needed to specify the location of an integer in a 1024 bit memory unit, given a 64
bit architecture? Do I assume int to be 64 bit in such case? I think int can only be 32 bit, while
longlong can be 64 bit
Polled Exception Handling: (MIPS uses this) The processor can branch to a certain address that begins a
sequence of instructions that check the cause of the exception and branch to handler code for the type of
exception encountered.
Vectored Exception Handling The processor can branch to a different address for each type of exception.
Each exception address is separated by only one word. A jump instruction is placed at each of these

final_review.markdown 12/8/2019

23 / 23

addresses that forces the processor to jump to the handler code for each type of exception.
Registers HI and LO:

Used for division operation. LO stores the integer division result and HI is the reminder. (the counter-
intuitive way)
Used for multiplication operation. LO stores the 32bit LSB and HI stores 32 bit MSB. This makes sense
since we are multiplying 32 bit with 32 bit, which shall produce at most 32 * 2 = 64 bit result. Notice
that the 64th bit is 1 iff it was add-carried from 63th.

2017 April Questions
Writing to memory - Timing Constraints

THA: Address Hold, time for address to stay stable after enabling write signal
TSA: Address Setup Time, time for address to be stable before enabling write signal =
TSD: Stable Data, time for data-in value to set up at destination. (Essentially reading into memory)
TDH: Data Hold, time for data-in stay unchanged after write signal changes.
TWP: Write Pulse Width

Reading From Memory - Timing Constraints
TAA: Address Access Time, time needed for address to be stable before reading data values
TOHA: Output Hold Time, time output data is held after change of address.

